The Metaphysical Significance of the Ugly Duckling Theorem

Abstract

According to Satosi Watanabe’s “theorem of the ugly duckling”, the number of (possible) predicates satisfied by any two different particulars is a constant, which does not depend on the choice of the two particulars. If the number of (possible) predicates satisfied by two particulars is their number of properties in common, and the degree of resemblance between two particulars is a function of their number of properties in common, then it follows that the degree of resemblance between any two different particulars is a constant, which does not depend on the choice of the two particulars either. Avoiding this absurd conclusion requires questioning assumptions involving infinity in the proof or interpretation of the theorem, adopting a sparse conception of properties according to which not every (possible) predicate corresponds to a property, or denying that degree of resemblance is a function of number of properties in common. After arguing against the first two options, this paper argues for a version of the third which analyses degrees of resemblance in terms of degrees of naturalness of common properties. In the course of doing so, it presents a novel account of natural properties.
Introduction

“...the point of philosophy,” according to Bertrand Russell, “is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it” (Russell, 1918, 514). The argument discussed in this paper, which proceeds from nearly provable or platitudinous premises about predicates and properties to the barely believable conclusion that every two different particulars resemble each other to the same degree, does not fall far short of Russell’s goal. The paper attempts to assess the metaphysical significance of the argument by considering which premise should be rejected, and whether any surrogate premise can capture its platitudinous aspects, without entailing a barely believable conclusion.

The first premise, which Satosi Watanabe dubs “the theorem of the ugly duckling” (Watanabe, 1969, 376), is:

(1) The number of (possible) predicates satisfied by two particulars which do not satisfy all the same (possible) predicates is a fixed (infinite) constant, which equals the number of (possible) predicates satisfied by only the first, as well as the number of (possible) predicates satisfied by only the second.

As Watanabe explains “The reader will soon understand the reason for referring to the story of Hans Christian Anderson, because this theorem, combined with the foregoing interpretation [or premises two and three below], would lead to the conclusion that an ugly duckling and a swan are just as similar to each other as are two (different) swans.” (Watanabe, 1969, 376). The first section explains the rationale behind this premise.
The second premise follows from an abundant conception of properties, according to which a particular has a property if and only if it satisfies a (possible) predicate corresponding to that property, and so the number of properties is the number of (possible) predicates. It is:

(2) The number of (possible) predicates satisfied by two particulars is the number of properties they have in common, the number of (possible) predicates satisfied by only the first is the number of properties the first has not in common with the second, and the number of (possible) predicates satisfied by only the second is the number of properties the second has not in common with the first.

Snow, for example, has the property of being white, according to abundant conceptions of properties, if and only if snow satisfies the corresponding predicate ‘is white’. Likewise, two peas in a pod have the properties of greenness, roundness and yuckiness in common, according to abundant conceptions of properties, if and only if they satisfy the corresponding predicates ‘is green’, ‘is round’, and ‘is yucky’. And cheese has the property of edibility not in common with chalk if and only if cheese but not chalk satisfies the predicate ‘is edible’.

The second premise is plausible on the hypothesis that the meaning of a (possible) predicate is a property: the meaning of the predicate ‘is white’, for example, is simply the property of being white. So even though the second premise could also be motivated by assuming the doctrine of predicate nominalism, according to which a particular has a property in virtue of satisfying a corresponding (possible) predicate, or the doctrine of class nominalism, according to which an individual has a property in virtue of being
a member of the class of individuals which have that property, it is also independently plausible: it requires for its motivation no stronger metaphysical doctrine than the thesis that properties are the meanings of (possible) predicates.

Proponents of sparse conceptions of properties, according to which the number of properties is less than the number of (possible) predicates, will find this the obvious premise to reject. But I will argue in the second section that many sparse conceptions of properties which are otherwise well motivated nevertheless fail to escape the barely believable conclusion that the degree of resemblance between two different particulars is a constant, independent of the choice of the two particulars. According to David Armstrong’s influential conception, for example, there are instantiated conjunctive, but no negative, disjunctive or uninstantiated properties (Armstrong, 1978b). But, I will argue, Armstrong’s conception turns out to entail that every particular has at most one property, and so the degree of resemblance between different particulars is zero, regardless of the choice of the two particulars.

The third premise is supported by the analysis of resemblance as having properties in common, which suggests that the more properties particulars have in common, the more they resemble each other, and the more properties particulars have not in common with each other, the less they resemble each other. It is:

(3) The degree of resemblance between two particulars is a function of the number of properties they have in common, the number of properties the first has not in common with the second, and the number of properties the second has not in common with the first.
It’s natural to suggest, for example, that two peas in a pod resemble each other to a
high degree because they have many properties in common and few properties not in
common. Likewise, it’s natural to suggest that the degree of resemblance between a
raven and a writing desk is low because a raven and a writing desk have few properties
in common and many properties not in common.

For illustrative purposes, I will focus on the suggestion that the degree of resemblance
between particulars is their proportion of properties in common or, in other words, their
number of properties in common, divided by their number of properties in total (the sum
of their number of properties in common and number of properties not in common). This
is convenient because the degree of resemblance between particulars which have all of
their properties in common is one, whereas the degree of resemblance between particulars
which have none of their properties in common is zero. But nothing important depends
on this choice of illustration.

The first premise and the second in combination entail that the number of properties
in common and the number of properties not in common between two different particulars
is a constant, which in combination with the third premise entails that the degree of
resemblance between two different particulars is a function of a constant, and so:

(4) The degree of resemblance between two particulars which do not satisfy all the
same (possible) predicates, or which do not have all of their properties in common,
or which differ from each other, is a fixed constant, which does not depend on the
choice of the two particulars.

This conclusion is barely believable. According to it, a raven resembles a writing desk,
for example, to the same degree as a raven resembles a magpie, and a cygnet resembles a duckling to the same degree as two different ducklings resemble each other.

Through Nelson Goodman’s later work, especially Seven Strictures on Similarity, Watanabe’s argument has become extremely familiar. As Goodman writes “...any two things have exactly as many properties in common as any other two. If there are just three things in the universe, then any two of them belong together in exactly two classes and have exactly two properties in common... Where the number of things in the universe is n, each two things have in common exactly 2^{n-2} properties out of the total $2^n - 1$ properties; each thing has 2^{n-2} properties that the other does not, and there are $2^{n-2} - 1$ properties that neither has” (Goodman, 1972, 443-444). But despite its familiarity, the argument is worth revisiting for three reasons.

Firstly, Goodman’s version of the argument assumes the controversial doctrine of class nominalism, according to which there is a property corresponding to every set of (possible) particulars, and so if n is the number of (possible) particulars, the number of properties is 2^n. While this is a much quicker route to the absurd conclusion, the assumption of class nominalism is itself in need of justification. As Goodman himself admits “…as a [predicate] nominalist, I take all talk of properties [and classes] as slang for a more careful formulation in terms of predicates” (Goodman, 1972, 443). The presentation below assumes neither class nor predicate nominalism (although it does assume the existence of classes and properties), and so is a more careful formulation in terms of predicates of the kind Goodman alludes to. As a result, it reveals more than Goodman’s presentation about the underlying source of the problem.
Secondly, contemporary discussions of the problem almost invariably focus on the case in which the number of (possible) predicates or properties is infinite. David Lewis, for example, writes “Because properties are so abundant, they are undiscriminating. Any two things share infinitely many properties, and fail to share infinitely many others. That is so whether the two things are perfect duplicates or utterly dissimilar. Thus properties do nothing to capture facts of resemblance” ((Lewis, 1983, 346); see also (Lewis, 1986b, 59-60)). In a similar vein, Graham Priest writes, about similarity between worlds, “Presumably, how similar two worlds are depends on what holds in each of these. But how can one define similarity in terms of these things? One certainly cannot define it in terms of the number of propositions over which the worlds differ. For if there are any differences at all, there will be an infinite number” (Priest, 2008, 97).

Since the number of possible predicates is infinite, the focus on the infinite case is unsurprising. But the focus on the infinite case also makes it hard to avoid the impression that infinity is the source of the problem, which in turn suggests that clear thinking about infinity may be the route to a solution. I will argue below that there are two controversial assumptions relating to infinity which could be rejected in order to resist the conclusion of the argument; namely, the axiom of choice and the thesis that every collection of (possible) predicates, whether finite or infinite, has a disjunction and conjunction. But since the argument goes through in the finite case without either of these controversial assumptions, I will also argue that controversies concerning infinity are a distraction, and do not undermine the force of the problem.

Finally, although it is clear that the conclusion of the argument should be avoided
by rejecting either the first, second or third premise, it is not at all clear which premise ought to be rejected. Ideally, a motivation for rejecting one premise rather than the other ought to include a surrogate for the rejected premise, which captures what is intuitive about the original premise, but which escapes the barely believable conclusion. However, I will argue below that many of the most obvious and popular surrogates, while succeeding in capturing what is intuitive about the original premises, in fact fail to escape the barely believable conclusion. I am most optimistic about the prospects for an intuitive revision of the third premise. But no solution which I know of is completely satisfactory.

In the first section, I will explain the rationale behind the first premise, with particular attention to the case in which the number of (possible) predicates is infinite, and to assumptions which may be resisted in order to resist the conclusion of the argument. In the second section, I will consider rejecting the second premise by denying that there is a property corresponding to every (possible) predicate, and so adopting a sparse conception of properties. In the third section, I will consider rejecting the third premise by retaining an abundant conception of properties, but denying that degrees of resemblance are a function of common and uncommon properties.

In particular, I will argue in the third section that degree of resemblance between particulars is a \textit{weighted} function of properties in common and not in common, where the weights in question are interpreted as degrees of objective naturalness or subjective importance. As a theory of degrees of naturalness, this theory is an explication of the conception Ted Sider calls “the extreme view”, according to which “one property is
no more natural than another if and only if makes for more similarity than the other’’ ((Sider, 1993, 52); see also (Dorr and Hawthorne, 2013, 22-23)). Nevertheless, I will argue in section three that “the extreme view” provides the best conception of degrees of resemblance available.

Besides the analysis of resemblance, naturalness has many roles in philosophy, and Sider’s opposition to the conception provided by the “extreme view” is driven by its inability to play those other roles (Sider, 1993, 58). But I am very sympathetic to the possibility, emphasised by Cian Dorr and John Hawthorne, that nothing can play all the roles that naturalness has been asked to (Dorr and Hawthorne, 2013). For that reason I want to set aside in this paper most of the other roles naturalness, and the theory of properties in general, is supposed to play in metaphysics, in order to focus exclusively on the problem of degrees of resemblance.

1 The First Premise

A predicate is a sentence with a name removed. The predicate ‘is white’, for example, is the sentence ‘snow is white’ with the name ‘snow’ removed. A (named) particular satisfies a predicate if and only if replacing the gap in the predicate by a name of the particular results in a true sentence. Snow satisfies ‘is white’, for example, because the sentence ‘snow is white’ is true. According to abundant conceptions of properties, there is a property corresponding to every predicate: corresponding to the predicate ‘is white’, for example, is the property of being white.

There are some properties that do not correspond to any actual predicate. As David
Armstrong writes “It is clearly possible, and we believe it to be the case, that particulars have certain properties and relations which never fall under human notice” (Armstrong, 1978a, 21). Nevertheless, if these properties were to fall under human notice, we could introduce predicates to talk about them, so corresponding to every property is a possible predicate. Possible predicates are a complicating factor at some points in the argument, because of their great number, but a simplifying factor at others, because of their completeness. When possible, I may omit to mention them.

A predicate entails another predicate if and only if necessarily any particular which satisfies the former also satisfies the latter. The predicate ‘is white’ entails the predicate ‘is coloured’, for example, because it’s necessary that any particular which satisfies ‘is white’ also satisfies ‘is coloured’. Entailment between predicates is a reflexive and transitive relation: since necessarily any particular which satisfies ‘is white’ satisfies ‘is white’, for example, ‘is white’ entails ‘is white’. And since ‘is scarlet’ entails ‘is red’ and ‘is red’ entails ‘is coloured’, ‘is scarlet’ entails ‘is coloured’.

It’s also convenient to stipulate that the relation of entailment between predicates is antisymmetric. In other words, if a predicate entails a second predicate and the second predicate entails the first, then they are the same predicate. Since ‘is white’ entails ‘is not unwhite’ and ‘is not unwhite’ entails ‘is white’, for example, ‘is white’ and ‘is not unwhite’ are the same predicate. This stipulation is convenient because it ensures that there is only one (possible) predicate corresponding to each property, so if there is a (possible) predicate corresponding to every property, then there is exactly one (possible) predicate corresponding to every property (Armstrong, 1978a, 7).
A relation which is reflexive, antisymmetric and transitive is called a partial ordering relation. The ordered pair \(\langle A, \leq \rangle \) of a set \(A \) and a partial ordering relation \(\leq \) between elements of \(A \) is called a partially ordered set (Gratzer, 2011, 1). Since entailment between predicates is a reflexive, antisymmetric and transitive relation, entailment between predicates is a partial ordering relation, and predicates are a partially ordered set under the relation of entailment. (As usual I will say that \(a < b \) if and only if \(a \leq b \) but it is not the case that \(b \leq a \), and \(a = b \) if and only if \(a \leq b \) and \(b \leq a \). As well as the relation of entailment between predicates, \(\leq \) below may stand for the standard ordering relation between real numbers: context should disambiguate.)

An element \(a \in A \) is the conjunction \(b \land c \) of two elements \(b, c \in A \) of a partially ordered set \(\langle A, \leq \rangle \) if and only if (i) \(a \leq b \) and \(a \leq c \) and (ii) for all \(d \in A \) if \(d \leq b \) and \(d \leq c \), then \(d \leq a \). In general, an element \(a \in A \) is the conjunction \(\bigwedge B \) of the elements in a subset \(B \subseteq A \) if and only if (i) for all \(b \in B \), \(a \leq b \) and (ii) for all \(c \in A \) if \(c \leq b \) for all \(b \in B \), then \(c \leq a \) (Gratzer, 2011, 5). The predicate ‘is red and square’ is the conjunction of ‘is red’ and ‘is square’, for example, because ‘is red and square’ entails ‘is red’ and entails ‘is square’, and because every predicate which entails ‘is red’ and entails ‘is square’ entails ‘is red and square’.

An element \(a \in A \) is the disjunction \(b \lor c \) of two elements \(b, c \in A \) of a partially ordered set \(\langle A, \leq \rangle \) if and only if (i) \(b \leq a \) and \(c \leq a \) and (ii) for all \(d \in A \) if \(b \leq d \) and \(c \leq d \), then \(a \leq d \). In general an element \(a \in A \) is the disjunction \(\bigvee B \) of the elements in a subset \(B \subseteq A \) if and only if (i) for all \(b \in B \), \(b \leq a \) and (ii) for all \(c \in A \) if \(b \leq c \) for all \(b \in B \), then \(a \leq c \) (Gratzer, 2011, 5). The predicate ‘is red’, for example, is the
disjunction of ‘is scarlet’, ‘is crimson’, ‘is maroon’, ... and so on, because ‘is scarlet’, ‘is crimson’, ‘is maroon’, ... and so on all entail ‘is red’, and every predicate which entails ‘is scarlet’, ‘is crimson’, ‘is maroon’, ... and so on also entails ‘is red’.

A lattice is a partially ordered set \(\langle A, \leq \rangle \) in which every pair of elements \(a, b \in A \) has a conjunction \(a \land b \) and a disjunction \(a \lor b \). Equivalently, a lattice is a partially ordered set \(\langle A, \leq \rangle \) in which every finite nonempty subset of elements \(B \subseteq A \) has a conjunction \(\bigwedge B \) and a disjunction \(\bigvee B \) (Gratzer, 2011, 9). Since every pair and so every finite nonempty subset of (possible) predicates has a conjunction which may be formed with ‘and’ and a disjunction which may be formed with ‘or’, the partial ordering of (possible) predicates under the relation of entailment is a lattice.

A lattice \(\langle A, \leq \rangle \) is complete if and only if every subset of elements \(B \subseteq A \) has a conjunction \(\bigwedge B \) and a disjunction \(\bigvee B \) (Gratzer, 2011, 50). Every finite lattice is complete, since every nonempty subset of elements of a finite lattice is a finite nonempty subset (and the conjunction and disjunction of the empty subset of elements are \(\bigvee A \) and \(\bigwedge A \) respectively, which exist because \(A \) is finite), so every nonempty subset of elements has a conjunction and disjunction. So if there were only a finite number of predicates, then the partial ordering of predicates under the relation of entailment would be a complete lattice.

But there is an infinite number of predicates. The predicates ‘is one year old’, ‘is two years old’, ‘is three years old’, ... and so on, for example, are countably infinite. And though some infinite subsets of the set of predicates do have a disjunction and conjunction, it’s controversial whether every infinite subset does, because it’s controversial
whether the disjunction or conjunction of an infinite set of predicates can be formed by joining every predicate in the set with the words ‘or’ or ‘and’. Although the disjunction of ‘is one year old’, ‘is three years old’, ‘is five years old’, ... and so on, for example, is ‘is an odd number of years old’, it’s controversial whether this disjunction can be properly expressed as ‘is one year old or is three years old or is five years old ...’ and so on.

But although the existence of disjunctions and conjunctions of infinite subsets of predicates is not obviously guaranteed by the possibility of using the words ‘or’ or ‘and’ to join all the predicates in the subset, and so whether every infinite subset of predicates has an actual predicate as its disjunction and conjunction is not obvious, it still seems plausible that every infinite subset of predicates has a possible predicate as its disjunction and conjunction, because it’s plausible that for every infinite subset of predicates, there is both a possible predicate which is satisfied by all and only the particulars which satisfy one of the predicates in the set and a possible predicate which is satisfied by all and only the particulars which satisfy all of the predicates in the set. So it’s plausible that the lattice of possible predicates under the relation of entailment is complete.

An element \(a \in A \) is the maximum \(\top \) of a poset \(\langle A, \leq \rangle \) if and only if \(b \leq a \) for all \(b \in A \) (Gratzer, 2011, 5). The predicate ‘exists’ or ‘is white or not white’, for example, is the maximum element of the set of predicates under the relation of entailment, because necessarily, if a particular satisfies any predicate, then it satisfies ‘exists’ and ‘is white or not white’ or, in other words, every predicate entails ‘exists’ and ‘is white or not white’. (In a complete or finite lattice, there must be a maximum \(\top \) since \(\bigvee A \) exists and \(a \leq \bigvee A \) for all \(a \in A \).)
Likewise, an element $a \in A$ is the minimum \bot of a poset $\langle A, \leq \rangle$ if and only if $a \leq b$ for all $b \in A$ (Gratzer, 2011, 5). The predicate ‘does not exist’ or ‘is white and not white’, for example, is the minimum element of the set of predicates under entailment, because necessarily, if a particular satisfies ‘does not exist’ or ‘is white and not white’, then it satisfies every predicate (albeit vacuously so, because necessarily no particular satisfies ‘does not exist’ or ‘is white and not white’) or, in other words, ‘does not exist’ or ‘is white and not white’ entail every predicate. (In a complete or finite lattice, there must be a minimum \bot since $\bigwedge A$ exists and $\bigwedge A \leq a$ for all $a \in A$.)

An element $a \in A$ is the negation $\neg b$ of an element $b \in A$ if and only if $a \lor b = \top$ and $a \land b = \bot$ (Gratzer, 2011, 97). The predicate ‘is not white’, for example, is the negation of the predicate ‘is white’ and vice versa, because ‘is white or not white’ is equivalent to ‘exists’ or ‘is white or not white’ and ‘is white and not white’ is equivalent to ‘does not exist’ or ‘is white and not white’. Likewise, the predicate ‘is abstract’ is the negation of the predicate ‘is concrete’ and vice versa, because ‘is abstract or concrete’ is equivalent to ‘exists’ or ‘is white or not white’ and ‘is abstract and concrete’ is equivalent to ‘does not exist’ or ‘is white and not white’.

A lattice $\langle A, \leq \rangle$ is complemented if and only if it has a minimum \bot, a maximum \top and every $a \in A$ has a negation $\neg a$ (Gratzer, 2011, 98). The set of (possible) predicates under the relation of entailment is a complemented lattice, since its minimum element is ‘does not exist’ or ‘is white and not white’, its maximum element is ‘exists’ or ‘is white or not white’ and since every (possible) predicate has a negation, which may be formed using the word ‘not’.
A lattice \(\langle A, \leq \rangle \) is distributive if and only if for all elements \(a, b, c \in A \), \(a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \) and \(a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \) (Gratzer, 2011, 14-15). In a complete and complemented distributive lattice \(\langle A, \leq \rangle \) it follows that for all finite or infinite subsets \(B \subseteq A \) and elements \(a \in A \), \(a \wedge \bigvee B = \bigvee \{ a \wedge b \mid b \in B \} \) and \(a \vee \bigwedge B = \bigwedge \{ a \vee b \mid b \in B \} \) (Gratzer, 2011, 154). Distributivity is required to prove the facts mentioned below, but since it’s uncontroversial in this context that the set of predicates ordered under the relation of entailment is a distributive lattice, I won’t stress its role.

A lattice is boolean if and only if it is distributive and complemented, and it has a minimum and maximum element (Gratzer, 2011, 15). So the lattice of (possible) predicates under the relation of entailment is boolean, because predicates under the relation of entailment are distributive and complemented (since every element has a negation), and it has a minimum and maximum element (‘does not exist’ or ‘is white and not white’ and ‘exists’ or ‘is white or not white’).

An element \(a \in A \) of a lattice \(\langle A, \leq \rangle \) is an atom if and only if \(\bot < a \) and for all \(b \in A \) if \(b < a \) then \(b = \bot \) (Gratzer, 2011, 101). In other words, an element is an atom if and only if no element is smaller, except the minimum. In the lattice of predicates which apply to a die in virtue of the number it lands, for example, there are six atoms: ‘lands one’, ‘lands two’, ‘lands three’, ‘lands four’, ‘lands five’ and ‘lands six’. (Note that an “atom” in this context is not a syntactically simple predicate: ‘lands odd’, for example, is not an atom, because it is strictly entailed by ‘lands one’, whereas ‘lands on an even number and lands on a prime number’ is an atom, because it is strictly entailed by ‘does not land’ but not by any other predicate. Atoms are akin to, but not exactly the same
as, Sider’s “profiles” (Sider, 1993, 50); see also (Dorr and Hawthorne, 2013, 23).

If \(\langle A, \leq \rangle \) is a finite lattice, then every element \(a \in A \) must be greater than or equal to some atom \(b \in A \). But if \(A \) is not finite, then it’s possible that \(\langle A, \leq \rangle \) has no atoms. Take, for example, the countably many logically independent predicates ‘lands heads on the first toss’, ‘lands heads on the second toss’, ‘lands heads on the third toss’, ... and so on. The conjunctions, disjunctions and negations of finite subsets of these predicates, which may be formed using the words ‘and’, ‘or’ and ‘not’ finitely many times, ordered under the relation of entailment form a boolean lattice. But for each consistent predicate in the lattice, a consistent predicate which entails it may be formed by conjoining one of the simple predicates from which it is not formed. The predicate ‘lands heads on the first toss or does not land heads on the second toss’, for example, is not an atom, because it is entailed by ‘lands heads on the first toss or does not land heads on the second toss and lands heads on the third toss’. So the lattice has no atoms.

But if \(\langle A, \leq \rangle \) is a complete boolean lattice, then every element \(a \in A \) must be greater than or equal to some atom \(b \in A \). Take again, for example, the countably many logically independent predicates ‘lands heads on the first toss’, ‘lands heads on the second toss’, ‘lands heads on the third toss’, ... and so on. The conjunctions, disjunctions and negations of arbitrary finite or infinite subsets of these predicates ordered under the relation of entailment form a complete boolean lattice. Every consistent predicate in the lattice is entailed by at least one atom, which may be formed by choosing predicates with which it is consistent to conjoin it with until there are no more. Since this may involve an infinite number of choices, this is the step which relies on the assumption of
the axiom of choice.

Every element \(a \in A \) in a complete boolean lattice \(\langle A, \leq \rangle \) is equivalent to the disjunction \(\bigvee \{ b \in B \mid b \leq a \} \) of a subset of the atoms \(B \subseteq A \) and for every subset \(C \subseteq B \) of the atoms \(B \subseteq A \) in a complete boolean lattice, \(C = \{ b \in B \mid b \leq \bigvee C \} \) (Davey and Priestly, 2002, 114-115). In other words, there is a one to one correspondence between the elements of a complete boolean lattice and the subsets of the atoms in the lattice which the elements are disjunctions of. In particular, in the complete boolean lattice of possible predicates, each possible predicate corresponds to the subset of atoms it is a disjunction of, and each subset of atoms has a possible predicate as their disjunction.

Let \(n \) be the number of atoms in a complete boolean lattice \(\langle A, \leq \rangle \). Then since there is a one to one correspondence between elements in \(A \) and subsets of atoms in \(B \subseteq A \), the number of elements in \(A \) is the number of subsets \(|\mathcal{P}(B)| = 2^n \) of the atoms. The number of predicates which apply to a die in virtue of the number it lands, for example, is \(2^6 \), since there is a predicate which applies for each combination of the six atoms ‘lands one’, ‘lands two’, ‘lands three’, ‘lands four’, ‘lands five’ and ‘lands six’. More importantly, if \(n \) is the number of atoms in the complete boolean lattice of possible predicates, then the total number of possible predicates is \(2^n \).

It follows that the number of predicates a particular satisfies is \(2^{n-1} \), since each particular must satisfy exactly one atomic predicate, but may satisfy the disjunction of that atomic predicate with any combination of the remaining \(n - 1 \) atomic predicates. The number of predicates satisfied by two particulars which do not satisfy all the same predicates is \(2^{n-2} \), since each two particulars satisfy in common the disjunctions of
exactly two atomic predicates with any combination of the remaining \(n - 2 \). And the number of predicates which are satisfied by only the first of two particulars which do not satisfy all the same predicates is also \(2^{n-2} \), since the first particular satisfies not in common with the second the disjunctions of the atomic predicate it satisfies with any combination of the remaining \(n - 1 \) atomic predicates, except for the atomic predicate satisfied by the second particular (Watanabe, 1969, 377).

So, as the first premise of the argument states, the number of (possible) predicates satisfied by two particulars which do not satisfy all the same (possible) predicates is a fixed constant, which equals the number of (possible) predicates satisfied by only the first and which equals the number of possible predicates satisfied by only the second (Watanabe, 1969, 376-377). So if there is a property corresponding to every (possible) predicate, and degree of resemblance is number of properties in common divided by number of properties in total, then it follows that the degree of resemblance between two particulars is \(\frac{2^{n-2}}{2^{n-2} + 2^{n-2} + 2^{n-2}} \), which is \(\frac{1}{3} \) if \(n \) is finite and undefined otherwise. This is something so paradoxical that no one will believe it.

2 The Second Premise

Sparse conceptions of properties deny that there is a property corresponding to every (possible) predicate, and so deny that the number of properties is the number of (possible) predicates. So it’s natural for a proponent of the sparse conception to resist the conclusion of the argument by denying its second premise. As Gonzalez Rodriguez-Pereyra, for example, writes “... what Watanabe proved is not a problem ... for it is
essential to his proof that the properties in question (or “predicates” to use his termi-
nology) are the members of the smallest complete Boolean lattice of a given set of
properties ... Thus if the properties of being red and being square are among the given
sparse properties, their Boolean lattice will contain properties like being red and square,
being red or not being square, being neither red nor square, etc. In general the lattice
will contain negative, disjunctive, and conjunctive properties. But these are not sparse
or natural ...” (Rodriguez-Pereya, 2002, 66-67). Nevertheless, I will argue in this section
that many conceptions of sparse properties cannot escape the absurd conclusion.

Two clarifications. First, sparse conceptions of properties typically maintain that
whether a property corresponds to a (possible) predicate is an a posteriori question.
The existence of the property of being white, for example, cannot be deduced a priori
from the existence of the corresponding predicate ‘is white’ (Armstrong, 1978b, 7-9).
But even if whether a property corresponds to a (possible) predicate is an a posteriori
question, it does not follow that there is nothing to be said in answer to that question
in logical terms.

Consider an analogy with probabilities. Although whether a proposition has a certain
probability is plausibly an a posteriori question, there is much which can be said about
the relationship between probabilities in logical terms – for example, that if two propo-
sitions are inconsistent, then the sum of their probabilities is the probability of their
disjunction. In this section of the paper, I want to focus particularly on sparse concep-
tions which articulate the relationships between properties in logical terms. Many sparse
conceptions of this kind, I will argue, do not escape the absurd conclusion.
Second, some sparse conceptions of properties maintain that whether there is a property corresponding to a (possible) predicate is not only \textit{a posteriori}, but revealed by fundamental physics. As David Lewis, for example, writes “Physics has its short list of ‘fundamental physical properties’: the charges and masses of particles, also their so-called ‘spins’ and ‘colours’ and ‘flavours’, ... an inventory of the \textit{sparse} properties of this-worldly things” (Lewis, 1986b, 60). But fundamental physical properties are not the respects in which ordinary macroscopic objects typically resemble each other, so this conception of sparse properties is poorly suited to feature in the analysis of resemblance (Schaffer, 2004, 94).

A natural way for proponents of sparse conceptions of properties to address this concern is to postulate the existence, in addition to the fundamental physical properties, of structural or complex properties, which depend on or derive from the fundamental physical properties. Then although ordinary macroscopic objects do not typically resemble each other in respect of fundamental physical properties, they may resemble each other in respect of the structural or complex properties which derive from the fundamental physical properties.

But the existence and nature of sparse structural or complex properties is extremely controversial (see, for example, Lewis (1986a)). The least controversial case is the example of conjunctive properties. But they are the source of the last problem I discuss below. I take it that if even the least controversial example of structural or complex properties is problematic, then it’s likely that the more controversial examples of structural or complex properties will be even more problematic. In general, although I can’t
show that there is no sparse conception of properties which avoids the problems I raise, I hope to consider enough to show that those problems are no accident.

I will begin with various toy examples which, while philosophically motivated, do not correspond to positions in the literature. I will then turn to the sparse conception of properties favoured by David Armstrong, which is one of the most influential positions in the literature. In another context, it may seem as if the problems with Armstrong’s conception are an accident due to careless formulation (this seems to be the view of John Bacon (1986), for example). But in the context of these toy examples, it is apparent that the problems with Armstrong’s conception are deep and robust.

Some conceptions of sparse properties cannot escape the absurd conclusion that the degree of resemblance between any two different particulars is a fixed constant because they are not sparse enough. According to the principle of instantiation, for example, there is a property corresponding to a (possible) predicate only if some particular satisfies that (possible) predicate (Armstrong, 1978a, 113). According to the principle of instantiation there is no property corresponding to the predicate ‘is faster than the speed of light’, for example, because nothing is faster than the speed of light. This suggests a sparse conception of properties according to which there is a property corresponding to a (possible) predicate if and only if some particular satisfies that predicate.

Just as every (possible) predicate corresponds to a disjunction of the n atoms, every unsatisfied (possible) predicate corresponds to a disjunction of the r unsatisfied atoms. So if there is a property corresponding to a (possible) predicate if and only if some particular satisfies that predicate, then the number of properties is not 2^n, the number
of (possible) predicates, but $2^n - 2^r$, the number of (possible) predicates minus the number of unsatisfied (possible) predicates.

Nevertheless, the number of properties a particular satisfies is still $2^n - 1$, since none of the (possible) predicates it satisfies are unsatisfied, the number of properties two different particulars have in common still 2^{n-2}, since none of the (possible) predicates satisfied by two particulars are unsatisfied, and the number of properties instantiated by only the first still 2^{n-2}, since none of the (possible) predicates satisfied by two particulars are unsatisfied. So if the degree of resemblance between two particulars is their proportion of properties in common, the degree of resemblance between two different particulars is still $\frac{2^{n-2}}{2^{n-2} + 2^{n-2} + 2^{n-2}}$ or $\frac{1}{3}$ if defined.

The principle of instantiation is sometimes combined with a principle of coinstantiation, according to which distinct properties correspond to (possible) predicates only if distinct particulars satisfy those (possible) predicates (Swoyer, 1996, 244). According to the principle of coinstantiation, distinct properties don’t correspond to the predicates ‘is a creature with a heart’ and ‘is a creature with a kidney’, for example, because no particular satisfies ‘is a creature with a heart’ but not ‘is a creature with a kidney’ and vice versa. This suggests a sparse conception of properties according to which there are distinct properties corresponding to (possible) predicates if and only if distinct particulars satisfy those (possible) predicates, and so according to which the number of properties is the number of (possible) predicates satisfied by distinct particulars.

Just as every (possible) predicate corresponds to a disjunction of the n atoms, every (possible) predicate satisfied by distinct particulars corresponds to a disjunction of the
n – r satisfied atoms. So if distinct properties correspond to (possible) predicates if and only if distinct particulars satisfy those predicates, the number of properties is 2\(^{n-r}\), the number of properties a particular instantiates is 2\(^{n-r-1}\), the number of properties two different particulars have in common is 2\(^{n-r-2}\) and the number of properties instantiated by only the first is 2\(^{n-r-1} - 2^{n-r-2}\) or 2\(^{n-r-2}\). So if degree of resemblance is proportion of properties in common, the degree of resemblance between two different particulars is
\[
\frac{2^{n-r-2}}{2^{n-r-2} + 2^{n-r-2} + 2^{n-r-2}} \text{ or still } \frac{1}{3} \text{ if defined.}
\]

Other conceptions of sparse properties cannot escape the absurd conclusion that the degree of resemblance between any two different particulars is a fixed constant because they are too sparse. Consider, for example, a sparse conception of properties according to which there is a property corresponding to every atomic (possible) predicate – in other words, those predicates which are not disjunctions of any others. Then the number of properties is \(n\), the number of atomic predicates. Since the atomic (possible) predicates are all inconsistent with each other, no particular satisfies more than one. And since the disjunction of the atomic (possible) predicates is tautologous, every particular satisfies at least one. So the number of atomic (possible) predicates a particular satisfies is one, and the number of atomic (possible) predicates satisfied by two particulars which do not satisfy all the same (possible) predicates is zero. So if properties correspond to atomic (possible) predicates and degree of resemblance is proportion of properties in common, then the degree of resemblance between any two different particulars is zero.

Let the rank of an element \(a = \bigvee \{b \in B \mid b \leq a\}\) in a lattice \(\langle A, \leq \rangle\) be the number \(|\{b \in B \mid b \leq a\}|\) of the atoms \(B \subseteq A\) it is a disjunction of (Watanabe, 1969, 327). Then
according to a less unaccommodatingly sparse conception, properties correspond to all
and only the (possible) predicates of a certain finite rank \(r \). The number of predicates of
finite rank \(r \), and so the number of properties according to this conception, is \(\binom{n}{r} \), the
number of disjunctions of length \(r \) which can be formed from \(n \) predicates. The number
of predicates of finite rank \(r \) satisfied by a particular is \(\binom{n-1}{r-1} \), since the disjunctions
of length \(r \) which apply to it must include the single atom satisfied by the particular,
but may include any \(r - 1 \) of the remaining \(n - 1 \) atoms.

The number of predicates of finite rank \(r \) satisfied by two particulars which do not
satisfy all the same predicates is \(\binom{n-2}{r-2} \), since the disjunctions of length \(r \) which
apply to it must include the two atoms corresponding to the two combinations of simple
predicates they satisfy, but may include any \(r - 2 \) of the remaining \(n - 2 \) atoms. And the
number of predicates of finite rank \(r \) which are satisfied by only the first of two particulars
which do not satisfy all the same predicates is \(\binom{n-1}{r-1} - \binom{n-2}{r-2} \) or \(\binom{n-2}{r-1} \), the
number of predicates of finite rank \(r \) which are satisfied by both subtracted from the
number of predicates of finite rank \(r \) which are satisfied by the first (Watanabe, 1969,
377).

So the number of (possible) predicates of finite rank \(r \) satisfied by two particulars
which do not satisfy all the same (possible) predicates is a fixed constant, as is the
number of (possible) predicates of rank \(r \) satisfied by only the first, which equals the
number of (possible) predicates of rank \(r \) satisfied by only the second (Watanabe, 1969,
377). If properties correspond to (possible) predicates of finite rank \(r \), and the degree
of resemblance between two particulars is a function of their number of common and
uncommon properties, then the degree of resemblance between two particulars is still a constant, which depends on the number of atomic (possible) predicates n and the rank r, but not on the choice of the two particulars.

So whereas conceptions according to which the sparse properties correspond to the instantiated or cointstantiated (possible) predicates are not sparse enough to escape the conclusion that the degree of resemblance between two different particulars is constant, conceptions according to which the sparse properties correspond to the (possible) predicates of a certain rank, especially the conception according to which the sparse properties correspond to the atomic predicates (which are the (possible) predicates of rank one), are too sparse to escape the conclusion that the degree of resemblance between two different particulars is constant. This suggests pursuing a conception of properties of intermediate sparseness.

According to one popular intermediately sparse conception of properties, there are no negative or disjunctive properties, but there are conjunctive properties. David Armstrong’s motivation to introduce conjunctive properties, for example, begins with the following consideration: “If every complex universal (complex property or relation) were a complex of simple universals then it would be rather natural to speak of the simple universals as the universals. But I do not think that it can be shown that every complex universal is a complex of simple universals. In the particular case of properties, it is logically and epistemically possible that all properties are conjunctive properties” (Armstrong, 1978b, 34).

This suggests a conception of properties according to which there is a property cor-
responding to every predicate below a certain rank \(r \). If \(r \) is finite then the simple properties could be identified as those of rank \(r - 1 \), and the conjunctive properties as those of rank less than \(r - 1 \). But if \(r \) were, for example, \(\aleph_0 \), then according to this conception every property would be conjunctive, since every predicate of rank \(k < \aleph_0 \) would be the conjunction of predicates of ranks \(k + 1 < \aleph_0 \). In the lattice of predicates which apply to people in virtue of their age in years, for example, ‘is one year old’ is the conjunction of ‘is one year old or two years old’ and ‘is one year old or three years old’, ‘is one year old or two years old’ is the conjunction of ‘is one year old or two years old or three years old’ and ‘is one year old or two years old or four years old’, ... and so on.

But if \(n \) and \(r \) are finite then the number of predicates of rank less than \(r \) satisfied by a particular is the sum \(\sum_{i=1}^{r-1} \binom{n-1}{i-1} \) of the number of predicates of each rank less than \(r \) satisfied by the particular. The number of predicates of rank less than \(r \) satisfied by two particulars which do not satisfy all the same predicates is the sum \(\sum_{i=2}^{r-1} \binom{n-2}{i-2} \) of the number of predicates of each rank less than \(r \) satisfied by two different particulars. And the number of predicates of rank less than \(r \) which are satisfied by only the first of two particulars which do not satisfy all the same predicates is the sum \(\sum_{i=1}^{r-1} \binom{n-2}{i-1} \) of the number of predicates of each rank less than \(r \) satisfied by only the first of two particulars which do not satisfy all the same predicates.

Even if \(n \) or \(r \) are infinite and \(n \leq r \), then the number of predicates of rank less than \(r \) satisfied by two different particulars which do not satisfy all the same predicates remains \(2^{n-2} \) since if \(n \leq r \) then all the predicates are predicates of rank less than \(r \). And even if \(n \) or \(r \) are infinite and \(0 < r < n \) then the number of predicates of rank less than \(r \)
satisfied by two different particulars which do not satisfy all the same predicates is $n - 2$, the number of combinations of less than length r of the $n - 2$ atoms which do not apply to one of the particulars. So if there is a property corresponding to every (possible) predicate of less than a certain (finite or infinite) rank r, and the degree of resemblance between two particulars is a function of their numbers of properties in common and not in common, then the degree of resemblance between two particulars is still a constant, which depends on the number of atomic (possible) predicates n and the rank r, but not on the choice of the two particulars.

I now turn to consider the sparse conception of properties favoured by David Armstrong, which is not merely a toy example, but one of the most influential in the literature. I will begin with a simplified version of Armstrong’s conception, which ignores the principle of instantiation. I will then discuss Armstrong’s actual conception, which includes the principle of instantiation. I will argue that neither conception succeeds in escaping the absurd conclusion that the degree of resemblance between two different particulars is a fixed constant, which does not depend on the choice of the two particulars.

If we ignore the principle of instantiation, then Armstrong favours a conception of properties which meets the following three conditions: (negation) if there is a property corresponding to a (possible) predicate a, then there is no property corresponding to its negation $\neg a$, (disjunction) if there is a property corresponding to two (possible) predicates a and b and $a \neq b$, then there is no property corresponding to their disjunction $a \lor b$, and (conjunction) if there is a property corresponding to two (possible) predicates a and b, then there is a property corresponding to their conjunction $a \land b$ (Armstrong,
This conception of properties is too sparse, because it follows that a property corresponds to only one possible predicate. For suppose that there is a property corresponding to a and a property corresponding to b. Then according to (conjunction) there is a property corresponding to $a \land b$. But since a is equivalent to $a \lor (a \land b)$ and b is equivalent to $b \lor (a \land b)$, and because we have stipulated that equivalent predicates are the same, there is a property corresponding to $a \lor (a \land b)$ and a property corresponding to $b \lor (a \land b)$. Then according to (disjunction) $a = a \land b$ and $b = a \land b$ (otherwise $a \lor (a \land b)$ and $b \lor (a \land b)$ would correspond to disjunctive properties), so $a = b$. So if there is a property corresponding to a and a property corresponding to b, then according to this conception, $a = b$ (Bacon, 1986, 49).

Because Armstrong accepts the principle of instantiation, he does not accept (conjunction) in full generality, and so it does not follow from Armstrong’s conception that there is a property corresponding to only one (possible) predicate. Instead, Armstrong endorses: (instantiated conjunction) if there is a property corresponding to two (possible) predicates a and b and some particular satisfies both a and b, then there is a property corresponding to their conjunction $a \land b$ (Armstrong, 1978b, 30).

But Armstrong’s conception is still too sparse, since it follows that each particular instantiates only one property. For suppose that there is a property corresponding to a and a property corresponding to b, and that some particular satisfies both a and b. Then according to (instantiated conjunction) there is a property corresponding to $a \land b$. But since $a = a \lor (a \land b)$ and $b = b \lor (a \land b)$, there is a property corresponding to...
a ∨ (a ∧ b) and a property corresponding to b ∨ (a ∧ b). Then according to (disjunction)
a = a ∧ b and b = a ∧ b, so a = b. So if there is a property corresponding to a and a
property corresponding to b and some particular satisfies both a and b, then, according
to Armstrong’s conception, a = b (Bacon, 1986, 49).

So Armstrong’s conception of properties has similar consequences to the conception
according to which the properties correspond to the atomic (possible) predicates. Sup-
posing that that there are no bare particulars, or in other words that at least one of
the (possible) predicates satisfied by a particular corresponds to a property, it follows
from Armstrong’s conception that exactly one of the (possible) predicates satisfied by
each particular corresponds to a property, or that the number of properties a particular
instantiates is one. The number of properties instantiated by two different particulars
is zero, since the one property each satisfies must be different if they are different. So
if their degree of resemblance is their proportion of properties in common, then their
degree of resemblance is zero.

3 The Third Premise

A natural way for proponents of abundant conceptions of properties to avoid the conclu-
sion of the argument is to revise the premise that the degree of resemblance between two
different particulars is a function of their number of common and uncommon properties.
Different properties, according to this revision, have different weights in determining
degrees of resemblance: the degree of resemblance between two different particulars is a
function of the weights of the properties they have in common, the weights of the prop-
erties the first has not in common with the second, and the weights of the properties the second has not in common with the first (Watanabe, 1969, 382).

Revising the premise that the degree of resemblance between two different particulars is a function of their number of common and uncommon properties to the thesis that the degree of resemblance between two different particulars is a weighted function of their common and uncommon properties must be at least as good a way to avoid the barely believable conclusion as adopting a given sparse conception of properties, because if the weights of the predicates are given by the function $w : A \rightarrow \{0, 1\}$ which takes each predicate in A to one if it corresponds to a property according to the sparse conception but to zero if it does not, then the revision to the premise can give the same number (if defined) as the degree of resemblance between two particulars as the given sparse conception of properties did.

One clarification. Proponents of abundant conceptions of properties disagree over the question, which I shall not try to resolve, of whether the weights should be interpreted as subjective degrees of importance (as Nelson Goodman (1972), for example, argues) or objective degrees of naturalness (as David Lewis (1983), for example, argues). Nevertheless, I will argue in this section that even without resolving this question, there is more to be said in logical terms about the nature of weights than there is to be said in logical terms about which predicates correspond to properties according to an appropriate sparse conception.

Reconsider the analogy with probabilities. Even though there is disagreement about whether the probability of a proposition should be interpreted in terms of subjective
credences or objective chances, there is much to be said about the relationship between
probability in logical terms – for example, that if two propositions are inconsistent, then
the sum of their probability is the probability of their disjunction – which is independent
of this issue. In this section of the paper, I want to focus particularly on what can be
said about the nature of weights in logical terms.

The analogy with probabilities suggests that the weights should be given by a function
function \(w : A \to \mathbb{R} \) from the set of predicates \(A \) to the real numbers such that for all
\(a \in A \), \(w(a) = 1 - p(a) \), where \(p : A \to \mathbb{R} \) is a function from the set of predicates \(A \)
to the real numbers which meets the following three conditions: (non-negativity) for all
\(a \in A \), \(0 \leq p(a) \), (normalisation) \(p(\top) = 1 \) and (finite additivity) for all \(a, b \in A \) such
that \(a \land b = \bot \), \(p(a \lor b) = p(a) + p(b) \). The weight of a property, according to this
idea, is the opposite of it’s peculiarity, where the minimum degree of peculiarity is zero,
predicates which apply to everything have the maximum degree of peculiarity, and the
peculiarity of a disjunction is the sum of the peculiarity of its disjuncts, when they are
inconsistent.

This characterisation of the weighting function captures the desired asymmetry be-
tween conjunctive and disjunctive properties which sparse conceptions which maintained
that properties exist corresponding to conjunctive but not to disjunctive predicates were
unable to. For for any pair of predicates \(a, b \in A \) such that \(a \leq b \) or \(a \) entails \(b \), it follows
that \(p(a) \leq p(b) \). And since for all \(a, b \in A \), \(a \land b \leq a \leq a \lor b \) it follows that for all
\(a, b \in A \), \(p(a \land b) \leq p(a) \leq p(a \lor b) \) or, in other words, that the weight of a conjunction is
greater than or equal to the weight of the conjuncts, whereas the weight of a disjunction
is less than or equal to the weight of the disjuncts.

But this characterization of the weighting function also has three counterintuitive consequences. Firstly, if \(p(a) = 0 \) and \(p(b) = 0 \) it follows that \(p(a \lor b) = 0 \). But if ‘is red’ and ‘is green’, for example, are not at all peculiar or perfectly natural (as Lewis would say), it shouldn’t follow that their disjunction ‘is red or green’ is not at all peculiar or perfectly natural, since there is a wider diversity between the things which are red or green than between the things which are red or than between the things which are green.

Secondly, if \(p(a) = p(b) \), \(p(c) = p(d) \), \(a \land c = \perp \), and \(b \land d = \perp \), it follows that \(p(a \lor c) = p(b \lor d) \). But if ‘is red’ and ‘is yellow’ are peculiar or natural to the same degree, and ‘is orange’ and ‘is purple’ are peculiar or natural to the same degree, it shouldn’t follow that ‘is red or orange’ is peculiar or natural to the same degree as ‘is yellow or purple’. Rather, ‘is red or orange’ should have a higher weight in determining degree of resemblance and a lower degree of peculiarity than ‘is yellow or purple’, since red and orange particulars are similar with respect to colour whereas yellow and purple particulars are not.

Thirdly, suppose (finite additivity) is strengthened to (general additivity), according to which for every subset, finite or infinite, \(B \subseteq A \) such that \(a \land b = \perp \) for all \(a, b \in B \), \(p(\lor B) = \sum_{b \in B} p(b) \). Then if there is an infinite subset \(B \subseteq A \) such that \(a \land b = \perp \) for all \(a, b \in B \) and every predicate \(b \in B \) is peculiar to the same non-negative degree, the sum \(p(\lor B) = \sum_{b \in B} p(b) \) must be zero or infinite. But if \(p(\lor B) = \sum_{b \in B} p(b) \) is infinite, this contradicts the fact that for all \(a \in A \), \(p(a) \leq 1 \). So if there is an infinite subset \(B \subseteq A \) such that \(a \land b = \perp \) for all \(a, b \in B \) and every predicate \(b \in B \) is peculiar to the
same non-negative degree, then the sum \(p(\bigvee B) = \sum_{b \in B} p(b) \) is zero.

However, it seems as if there are infinite sets of predicates which all have the same non-negative degree of peculiarity. It seems, for example, that there is an infinite number of determinate shades of colour, which all have equal weight in determining degree of resemblance. Their equal degree of peculiarity cannot be positive, since then the degree of peculiarity of their disjunction ‘is coloured’ would be an infinite number greater than one, contradicting the fact that all degrees of peculiarity are real numbers less than one. So their equal degree of peculiarity must be zero, and the sum of their zero degrees of peculiarity or the degree of peculiarity of their disjunction ‘is coloured’ must be zero too. But since there is a great deal of heterogeneity amongst the things that are coloured, the degree of peculiarity of ‘is coloured’ should be greater than zero.

These three problems arise partly from the intuition that certain predicates, such as those expressing the colours, should have equal weight in determining degrees of resemblance. It’s natural to generalise this intuition by suggesting that each of the \(n \) atomic predicates has an equal peculiarity which if \(n \) is finite is equal to \(\frac{1}{n} \). Since according to (finite additivity) the peculiarity \(p(a) \) of a predicate \(a \) is the sum of the pecularities \(\frac{1}{n} \) of the \(r \) inconsistent atoms it is a disjunction of, the peculiarity of each predicate of rank \(r \) would be \(\frac{r}{n} \), so that every predicate of the same rank would have a constant weight in determining degree of resemblance of \(\frac{n - r}{n} \).

Since in a finite lattice with \(n \) atoms the number of predicates of rank \(r \) satisfied by two particulars which do not satisfy all the same predicates is \(\binom{n - 2}{r - 2} \), the total weight of the properties in common between two particulars would be \(\sum_{r=2}^{n} \frac{n - r}{n} \binom{n - 2}{r - 2} \).
And since the number of predicates of rank \(r \) which are satisfied by only the first of
two particulars which do not satisfy all the same predicates is \(\binom{n-2}{r-1} \), the total weight
of the properties of only one particular would be \(\sum_{r=1}^{n} \frac{n-r}{n} \binom{n-2}{r-1} \). Both are fixed
constants depending only on the number of atomic predicates \(n \), and not on the choice
of the two particulars.

In order to escape these problems with this approach, one not unnatural proposal is to
weaken (finite additivity) to require that the peculiarity of the disjunction of inconsistent
predicates is not strictly equal to but merely greater than or equal to the sum of the
disjunctions or, in other words, to: (finite superadditivity) for all \(a, b \in A \) such that
\(a \land b = \perp \), \(p(a \lor b) \geq p(a) + p(b) \). The peculiarity of a disjunction such as ‘is red
or orange’, for example, is greater than or equal to the sum of the peculiarities of the
disjuncts ‘is red’ and ‘is orange’.

This characterisation still captures the desired asymmetry between conjunctive and
disjunctive properties. For for all predicates \(a, b \in A \) such that \(a \leq b, b = a \lor (b \land \neg a) \), and
so it follows from (finite superadditivity) that \(p(b) \geq p(a) + p(b \lor \neg a) \) and so \(p(b) \geq p(a) \).
So it still follows that for all \(a, b \in A \), \(p(a \land b) \leq p(a) \leq p(a \lor b) \) or, in other words,
that the weight of a conjunction is greater than or equal to the weight of the conjuncts,
whereas the weight of a disjunction is less than or equal to the weight of the disjuncts.

But the three counterintuitive consequence don’t follow. Firstly, even if \(p(a) = 0 \)
and \(p(b) = 0 \), it doesn’t follow that \(p(a \lor b) = 0 \), but only that \(p(a \lor b) \geq 0 \). If ‘is red’
and ‘is green’, for example, are perfectly natural or not at all peculiar, ‘is red or green’
may still be less than perfectly natural or somewhat peculiar.
Secondly, even if \(p(a) = p(b), p(c) = p(d), a \land c = \bot \) and \(b \land d = \bot \), it doesn’t follow that \(p(a \lor c) = p(b \lor d) \), but only that \(p(a \lor c) \geq p(a) + p(c) = p(b) + p(d) \leq p(b \lor d) \). So even if ‘is red’ and ‘is yellow’ are peculiar or natural to the same degree, and ‘is orange’ and ‘is purple’ are peculiar or natural to the same degree, it doesn’t follow that ‘is red or orange’ is peculiar or natural to the same degree as ‘is yellow or purple’.

Thirdly, suppose (finite superadditivity) is strengthened to (general superadditivity), according to which for every subset, finite or infinite, \(B \subseteq A \) such that \(a \land b = \bot \) for all \(a, b \in B \), \(p(\bigvee B) \geq \sum_{b \in B} p(b) \). Then even if there is an infinite subset \(B \subseteq A \) such that \(a \land b = \bot \) for all \(a, b \in B \) and every predicate \(b \in B \) is natural to the same non-negative degree, the sum \(\sum_{b \in B} p(b) \) must still be zero or infinite. Since \(\sum_{b \in B} p(b) \) cannot be infinite, it must be zero. However, it only follows from this and (general superadditivity) that \(p(\bigvee B) \geq 0 \), which is unexceptionable.

Supposing, for example, that there is an infinite number of determinate shades of colour, which all have equal non-negative weight in determining degree of resemblance. Their equal degree of peculiarity still cannot be positive, since then the degree of peculiarity of their disjunction ‘is coloured’ or the sum of their equal degrees of peculiarity would be an infinite number greater than one. So their equal degree of peculiarity must be zero. But it follows from this and (general superadditivity) only that the degree of peculiarity of their disjunction ‘is coloured’ is greater than or equal to zero, which is unexceptionable.
4 Conclusion

In order to escape the barely believable conclusion that the degree of resemblance between two different particulars is a fixed constant, independent of the choice of the two particulars, one must deny either the first premise, that the number of (possible) predicates satisfied by two particulars which do not satisfy all the same predicates is a fixed constant equal to the number of (possible) predicates satisfied by only the first, the second premise, that the number of (possible) predicates satisfied by two particulars is the number of properties they have in common and the number of (possible) predicates satisfied by only one is the number of properties they have not in common, or the third premise, that the degree of resemblance between particulars is a function of the number of properties they have in common and the number of properties they have not in common. This section concludes by reconsidering each option in light of the preceding discussion, and arguing tentatively for the third.

The rationale for the first premise, that the number of (possible) predicates satisfied by two particulars which do not satisfy all the same predicates is a fixed constant equal to the number of (possible) predicates satisfied by only the first, was divided into a provable part, that the number of elements in a complete boolean lattice with \(n \) atoms is \(2^n \), and a very plausible part, that the (possible) predicates ordered by entailment are a complete boolean lattice. So one may deny the first premise either by rejecting the provable part, and denying that the number of elements in a complete boolean lattice with \(n \) atoms is \(2^n \), or denying the very plausible part, that the (possible) predicates
ordered by entailment are a complete boolean lattice.

The only controversial assumption of the proof that the number of elements in a complete boolean lattice with \(n \) atoms is \(2^n \) was the axiom of choice, which was required to prove the existence of the atoms in the infinite case. Since it’s easy in the infinite case to form the impression that infinity is the source of the problem, and since the axiom of choice is associated with many counterintuitive results concerning infinity, it’s tempting to attempt to escape the barely believable conclusion in the infinite case by denying the axiom of choice. But since the conclusion of the argument is equally barely believable even in the finite case, and since the axiom of choice is not needed for the proof in the finite case, denying the axiom of choice does not lead to a general solution of the problem. Given this, it seems most likely that the axiom of choice is not the source of the problem even in the infinite case.

Likewise, the most controversial assumption of the plausible part is that the boolean lattice of (possible) predicates under the relation of entailment is a complete lattice or, in other words, that every infinite set of (possible) predicates has a disjunction and a conjunction. Since it’s easy in the infinite case to form the impression that infinity is the source of the problem, and since the existence of arbitrary infinite disjunctions and conjunctions is associated with other counterintuitive results, it’s tempting to escape the barely believable conclusion in the infinite case by denying that the boolean lattice of (possible) predicates under the relation of entailment is complete and that every infinite set of (possible) predicates has a disjunction and conjunction. But since the conclusion of the argument is equally barely believable even in the finite case, and since the assumption
that the lattice of (possible) predicates is complete is not needed for the proof in the
finite case, denying the assumption of completeness does not lead to a general solution
of the problem. Given this, it seems most likely that completeness is not the source of
the problem even in the infinite case.

The second premise, that the number of (possible) predicates satisfied by two par-
ticulars is the number of properties they have in common and the number of (possible)
predicates satisfied by only one is the number of properties they have not in common,
was motivated by an abundant conception of properties, according to which there is a
property corresponding to every (possible) predicate. So one may motivate denying the
second premise by adopting a sparse conception of properties. I considered two kinds
of sparse conceptions of properties above. The first denied the existence of properties
corresponding to uninstantiated or coextensive predicates. The second denied the exis-
tence of properties corresponding to negative, disjunctive and conjunctive predicates. I
also considered David Armstrong’s extremely influential conception of sparse properties,
according to which there are instantiated conjunctive, but no negative, disjunctive or
uninstantiated properties.

It does not follow from these results that there is no sparse conception of properties
which escapes the barely believable conclusion (I am more optimistic, for example, about
a proposal due to Peter Gardenfors (2000) and elaborated by Graham Oddie (2005)).
And for any particular lattice of (possible) predicates, it seems possible to identify which
(possible) predicates in the lattice contribute towards resemblance between the partic-
ulars which satisfy them, and so which (possible) predicates correspond to predicates.
But it does not seem possible to clarify which (possible) predicates contribute towards resemblance using the resources available here, so I am pessimistic about the prospects of resolving the problem by adopting a sparse conception of properties.

The third premise, that the degree of resemblance between particulars is a function of the number of properties they have in common and the number of properties they have not in common, was motivated by the analysis of resemblance as having properties in common, which suggests that the more properties particulars have in common, the more they resemble each other, and the more properties particulars have not in common with each other, the less they resemble each other. One way to avoid the barely believable conclusion, while retaining what is intuitive about this premise, is to argue that the degree of resemblance is a function of the weights of the properties they have in common and the weights of the properties they have not in common. One may think of these weights as subjective degrees of importance, as Nelson Goodman (1972) does, or objective degrees of naturalness, as David Lewis (1983) does.

Revising the premise that the degree of resemblance between two different particulars is a function of their number of common and uncommon properties to the thesis that the degree of resemblance between two different particulars is a weighted function of their common and uncommon properties must be at least as good a way to avoid the conclusion that the degree of resemblance between two different particulars is constant if defined as adopting a given sparse conception of properties, because if the predicates which correspond to a property according to a given sparse conception have weight one and the predicates which do not correspond to a property according to that sparse conception have weight zero.
conception have weight zero, then the sums of the weights of the predicates in common and not in common between two particulars according to this revision will be the same as the number of predicates in common and not in common according to the given sparse conception.

But perhaps unsurprisingly, adding rather natural assumptions about the weights of various (possible) predicates, while recapturing some of what was intuitive about sparse conceptions of properties which deny the existence of properties corresponding to negative and disjunctive predicates, led to a conception of degrees of importance or naturalness which still failed to escape the barely believable conclusion that the degree of resemblance between two different particulars is a fixed constant, independent of the choice of the two particulars. In this case, however, a natural weakening of the assumptions seemed to lead to a better conception, according to which the weight of a predicate is always non-negative, the weight of predicates necessarily satisfied by everything is zero, and the weight of disjunctions of inconsistent predicates is always less than or equal to the weight of their disjuncts. This is the solution about which I’m most optimistic.

References

