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This supplementary online appendix provides additional results and formal proofs for the

main paper “Signaling Private Choices”. Section 1 provides a formal proof of Proposition 1

and Corollary 1 in Section 4 of the main paper. Section 2 provides the full details for each

of the applications in Section 4.2 of the main paper. Section 3 provides a technical appendix

to Section 5 of the main paper. It provides some technical preliminaries for a more formal

treatment of endogenous signaling games, clarifies some technical concepts in the definition of

the class of the games, provides the reordering algorithm, provides a guide to reordering for

applied researchers, proves Proposition 4 of the main paper, and provides an example to show

the relationship with proper equilibrium.

1 Proof of Proposition 1 and Corollary 1

In order to prove Proposition 1 of the main paper, we introduce some notation and establish a

lemma. For games in Γ1
S , we assume without loss of generality that T , A, and B are subsets

of the set of real numbers. We use Greek letters τ , α, and β for probability distributions on

T , A, and B respectively (τ ∈ ∆T , α ∈ ∆A, and β ∈ ∆B). For any game in Γ1
S , the sender’s

behavior strategy1 is in the form of (τ, α(·)) and the receiver’s behavior strategy is in the form

of β(·). We extend the payoff functions ũS and ũR to behavior strategies such that2

ũS(τ, α(·), β(·)) ≡
∫
T

∫
A

∫
B
uS(t, a, b)β(a)(db)α(t)(da) τ(dt),

ũR(τ, α(·), β(·)) ≡
∫
T

∫
A

∫
B
uR(t, a, b)β(a)(db)α(t)(da) τ(dt).

∗KAIST College of Business. E-mail: cyin@business.kaist.ac.kr
†Department of Economics, National University of Singapore. E-mail: jwright@nus.edu.sg
1Aumann (1964) extended Kuhn’s (1953) theorem (on the equivalence of mixed strategies and behav-

ior strategies) to infinite extensive-form games.
2Note that payoff functions ũS and ũR are functions of pure-strategy profiles whereas payoff functions

uS and uR are functions of terminal histories. See Section 3.1.
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Similarly, let the expected payoffs in the subgame of the reordered game which follows the choice

of a (when the sender chooses τ(a) and the receiver chooses β(a)) be denoted by

uS(τ(a), a, β(a)) ≡
∫
T

∫
B
uS(t, a, b)β(a)(db) τ(a)(dt),

uR(τ(a), a, β(a)) ≡
∫
T

∫
B
uR(t, a, b)β(a)(db) τ(a)(dt).

Suppose that (τ o, αo(·);βo(·)) is a subgame-perfect equilibrium in G1
S ∈ Γ1

S . From τ o and

αo(·), we can construct a joint probability distribution on T × A. Let αo be the marginal

probability distribution (of a) induced by the joint probability distribution. Let Ao be the

support of αo, and a typical subset of Ao which has αo-measure zero be denoted by Aonull.

Let τ o(a) be the conditional probability distribution (of t given a ∈ Ao), induced by the joint

probability distribution.

Lemma 1 Consider any game G1
S ∈ Γ1

S and its reordered game G1
r. If a strategy profile

(τ o, αo(·);βo(·)) is a subgame-perfect equilibrium in G1
S then for all ao ∈ Ao \ Aonull for some

Aonull ⊂ Ao, (τ o(ao), βo(ao)) is a Nash equilibrium in the subgame of G1
r following ao.

Proof of Lemma 1. Since (τ o, αo(·);βo(·)) is a subgame-perfect equilibrium in G1
S ,

(τ o, αo(·)) ∈ arg max
(τ,α(·))∈∆T×(∆A)T

ũS(τ, α(·), βo(·)) and

βo(·) ∈ arg max
β(·)∈(∆B)A

ũR(τ o, αo(·), β(·)).

Then we can choose Aonull ⊂ Ao such that for all ao ∈ Ao \Aonull,

τ o(ao) ∈ arg max
τ∈∆T

uS(τ, ao, βo(ao)), (1)

βo(ao) ∈ arg max
β∈∆B

uR(τ o(ao), ao, β), and (2)

uS(τ o(ao), ao, βo(ao)) = ũS(τ o, αo(·), βo(·)). (3)

The inclusions (1) and (2) imply that (τ o(ao), βo(ao)) is a Nash equilibrium in the subgame of

G1
r following ao.

Proof of Proposition 1. We first prove a claim that for any subgame-perfect equilib-

rium (τ o, αo(·);βo(·)) in G1
S , there exists an RI-equilibrium where the sender’s payoff is greater

than or equal to the sender’s payoff in this subgame-perfect equilibrium. Consider an RI-

equilibrium (τ̃ , α̃(·); β̃(·)) in G1
S . This implies that there exists a subgame-perfect equilibrium

(α∗, τ∗(·);β∗(·)) in G1
r , where β∗(·) = β̃(·). If the sender’s payoff in this RI-equilibrium is

greater than or equal to its payoff in (τ o, αo(·);βo(·)) then we are done. Suppose not. Consider
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a strategy profile (ao, τ̂(·); β̂(·)) in G1
r such that

τ̂(a) =

{
τ o(ao) for a = ao

τ∗(a) for a 6= ao
and β̂(a) =

{
βo(ao) for a = ao

β∗(a) for a 6= ao,

where ao ∈ Ao is chosen such that the inclusions (1), (2), and the equation (3) hold. This

strategy profile is a subgame-perfect equilibrium in G1
r because (i) (τ o(ao), βo(ao)) is a Nash

equilibrium in the subgame following ao by Lemma 1, (ii) (τ∗(a), β∗(a)) is a Nash equilibrium

in the subgame following a 6= ao, and (iii) ao is an optimal choice for the sender given the Nash

equilibria in the proper subgames (since the sender’s payoff in the RI-equilibrium is less than its

payoff in the subgame-perfect equilibrium (τ o, αo(·);βo(·))). We can verify that (τ̂(ao), ao; β̂(·))
is an RI-equilibrium in G1

S , where the choice of a is always ao regardless of the choice of t. This

RI-equilibrium yields the same payoff to the sender as (τ o, αo(·);βo(·)). This proves the claim.

Since the set of RI-equilibrium payoffs to the sender admits a maximal element, there exists at

least one RI-equilibrium that yields the best payoff to the sender among all subgame-perfect

equilibria.

Now it remains to prove the last statement. Suppose that a subgame-perfect equilibrium

(τ o, αo(·);βo(·)) yields a payoff to the sender which is the same as or greater than that of an

RI-equilibrium in G1
S . Corresponding to this RI-equilibrium, there exists a subgame-perfect

equilibrium (α∗, τ∗(·);β∗(·)) in G1
r , where β∗(·) is the same as the receiver’s strategy in the

RI-equilibrium and the sender’s payoff is not greater than that of the RI-equilibrium. We

prove the last statement by showing that the subgame-perfect equilibrium (τ o, αo(·);βo(·)) is

outcome-equivalent to an RI-equilibrium in G1
S . We can choose Aonull ⊂ Ao and construct a

strategy profile (αo, τ̂(·); β̂(·)) in G1
r such that

τ̂(a) =

{
τ o(a) for a ∈ Ao \Aonull
τ∗(a) for a /∈ Ao \Aonull

and β̂(a) =

{
βo(a) for a ∈ Ao \Aonull
β∗(a) for a /∈ Ao \Aonull.

This strategy profile is a subgame-perfect equilibrium in G1
r because (i) (τ o(a), βo(a)) is a Nash

equilibrium in the subgame following a ∈ Ao \ Aonull by Lemma 1, (ii) (τ∗(a), β∗(a)) is a Nash

equilibrium in the subgame following a /∈ Ao \ Aonull, and (iii) αo is an optimal choice for the

sender given the Nash equilibria in the proper subgames (since maxa{uS(τ∗(a), a, β∗(a))} is

not greater than maxa{uS(τ o(a), a, βo(a))}). The subgame-perfect equilibrium (τ o, αo(·);βo(·))
is outcome-equivalent3 to the subgame-perfect equilibrium (αo, τ̂(·); β̂(·)) in G1

r , and outcome-

equivalent to an RI-equilibrium (τ o, αo(·); β̂(·)) in G1
S .

Proof of Corollary 1. Note that the best payoff to the sender among all Nash equilibrium

payoffs in the proper subgames of G1
r is the best payoff to the sender among all subgame-

perfect equilibrium payoffs in G1
S . Suppose on the contrary that there exists an RI-equilibrium

3We say two strategy profiles are outcome-equivalent if probability distributions over the set of termi-
nal nodes are equal almost everywhere when the one-to-one correspondence of terminal nodes between
the original and reordered games is considered.
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(τ o, αo(·);βo(·)) that yields a strictly lower payoff to the sender than its best equilibrium pay-

off. By the definition of RI-equilibrium, βo(a) is a Nash equilibrium strategy in the subgame

following each a in G1
r . Suppose that the subgame following a∗ in G1

r is the proper subgame

where all Nash equilibria yield the same best payoff to the sender. Let (τ∗(a∗);βo(a∗)) be one

of the Nash equilibria in the proper subgame. This implies that the sender can obtain its best

equilibrium payoff by choosing some t in the support of τ∗(a∗) and then a∗ when the receiver

chooses its strategy βo(·) in G1
S . Let t∗ be one such t. Then, the sender can deviate profitably

from its strategy (τ o, αo(·)) by choosing t∗ at its first information set and a∗ at all of its suc-

ceeding information sets in G1
S . This is a contradiction to the supposition that the strategy

profile (τ o, αo(·);βo(·)) is an RI-equilibrium.

2 Applications

In this section, we provide the full details of the applications discussed in Section 4.2 of the

main paper. As will become clear from the models that follow, the properties of monotone

endogenous signaling games do not hold globally for these applications. Nevertheless, since they

hold locally around the relevant equilibria for appropriate parameter values, the commitment

effect and signal exaggeration still apply for appropriate parameter values.

2.1 Costly announcements and inflation

Consider the game specified in Section 4.2.1 of the main paper.

In the original game there are a continuum of subgame-perfect equilibria, which are difficult

to characterize in general. Focusing on pure-strategy equilibria, and assuming differentiabil-

ity of the receiver’s equilibrium strategy b̄(·) and second-order conditions hold, the equilibria

(t̄, ā(·); b̄(·)) have to satisfy

t̄ =
κā(t̄) + λt̂− θ

κ+ λ
, (4)

ā(t̄) = t̄−
(
b̄(ā)− (t̄+ θ)

)
b̄′(ā)

κ
, and (5)

b̄(ā) = t̄, (6)

where recall ā = ā(t̄) and b̄ = b̄(ā). Even assuming linearity of the receiver’s equilibrium

strategy, i.e. b̄(a) = c0 + c1a, we obtain a continuum of equilibria satisfying (4)-(6).4 These

4Going beyond linearity (or differentiability) of the receiver’s beliefs te(·), additional equilibria may
arise and second-order conditions will no longer be straightforward to confirm.
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equilibria can be parameterized by c1. The corresponding equilibrium outcomes are:

t̄ = b̄ = t̂− θ (1− c1)

λ
, (7)

ā = t̂− θ

λ
+
θ (λ+ κ) c1

κλ
, and (8)

uS(t̄, ā, b̄) = −
θ2
(
κ (1− c1)2 + λ

(
κ+ c2

1

))
κλ

. (9)

By setting c1 = 0, we obtain the equilibrium outcome with passive beliefs tpa = apa = bpa =

t̂− θ/λ. Since the sender’s announcement is ignored, it may as well tell the truth. However, in

equilibrium it chooses a lower level of effort compared to its ideal level tob = t̂ due to its lack

of commitment (if it could commit to t = t̂ it would be better off). This corresponds to the

discretionary inflation level (higher than first-best) in the time inconsistency example.

Solving the reordered game, in which a is set in stage 1a and t is set in stage 1b, is trivial.

We first look for an equilibrium in the choice of t and b for a given choice of a. The result is

that t∗(a) = b∗(a) = (κa− θ+ t̂λ)/(λ+κ) for all a. Given this, solving for the optimal choice of

a in stage 1a, the unique RI-equilibrium outcome of the original game is t̃ = b̃ = t̂− θ/(λ+ κ)

and ã = t̂. Substituting c1 = κ/(λ + κ) into (7)-(8) confirms this outcome corresponds to one

of the continuum of equilibria above, parameterized by c1.

Consistent with optimality, the RI-equilibrium involves the best payoff for the sender from

the continuum of equilibrium payoffs in (9). Clearly, if θ > 0 then t̃ > tpa and ã > apa so that

even though the sender’s effort is unobserved, it is still able to obtain a commitment benefit in

the RI-equilibrium. This corresponds to reducing inflation towards the government’s first-best

level in the time inconsistency example, i.e. t̃ < tpa and ã < apa reflecting that θ < 0 in

the example. Note, in the RI-equilibrium the sender benefits from having a higher lying cost

parameter κ.

Consistent with signal exaggeration, we also find announcements are inflated: ã = t̂ >

aob(t̃) = t̃ = t̂−θ/(λ+κ) if θ > 0. Although the sender still chooses less effort than its first-best

level t̂, due to signal exaggeration it turns out that its announced effort level a is exactly equal

to its ideal level t̂. As a consequence, in this example, while signal exaggeration increases as the

lying cost parameter κ gets small, the level of signal exaggeration is bounded—the equilibrium

level of effort converges towards the passive beliefs level t̂ − θ/λ, while the announced effort

remains at t̂. Even with a very small cost of lying, the sender will not want to exaggerate very

much.

2.2 Limit pricing and business strategy

A large set of applications of endogenous signaling games is to the case of unobserved “invest-

ment”. In this section, we provide the full details of the model of limit pricing briefly noted

in Section 4.2.2 of the main paper, in which the incumbent’s private cost is determined en-
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dogenously by its unobserved investment in cost-reducing R&D. This application, along with

other applications involving the signaling of private investment choices, are a cross between the

top-dog entry deterrence strategy of Fudenberg and Tirole (1984) and the classic model of limit

pricing studied by Milgrom and Roberts (1982), as shown in Table 1.

Observed Unobserved
Limit pricing

Nature Milgrom & Roberts (1982)
chooses Signaling in oligopoly

Mailath (1989)

Sender Business strategy Signaling private
chooses Fudenberg & Tirole (1984) investment choices

Table 1: Business strategy and signaling

The specific model of limit pricing we consider involves an incumbent I that initially has

constant marginal cost cH and is a monopolist. It faces a potential rival E with marginal cost

cL < cH . The timing, information and payoffs are summarized as follows:

1. In stage 1, I chooses how much to invest k ∈ [0,K] in some potentially cost-reducing

technology, where K > 0. The cost of this investment is C (k), which is increasing

and convex. Specifically, we assume C (0) = 0, C ′ (0) ≥ 0, C ′′ (0) ≥ 0, C ′ (k) > 0 and

C ′′ (k) > 0 for 0 < k ≤ K. The investment has probability α (k) of being successful, where

α′ (k) > 0 and α′′ (k) < 0 for 0 ≤ k < K, with α (0) = 0 and α (K) = 1. With probability

0 ≤ α (k) ≤ 1, I’s constant marginal cost will be cL < cH , while with probability 1−α (k),

I’s marginal costs will remain at cH . Thus, the more the incumbent invests, the higher

the probability of it being able to lower its costs from cH to cL, with this probability

becoming one if it invests K. Without observing the outcome of whether its investment

is successful, I also sets a price p > 0, reflecting it has to announce a price and cannot

change it over the relevant period prior to a rival’s possible entry.

2. In stage 2, the success of the investment is realized, and I produces for the relevant

demand Q (p). We assume Q (p) is continuous in p for positive p, and strictly decreasing

in p until demand becomes zero.

3. In stage 3, a potential entrant E observes p (but not k or the outcome of the investment)

and decides whether to enter. It faces a constant marginal cost of cL, but it also has to

incur a fixed cost F > 0 of entry. Its outside option is zero.

4. In stage 4, E also learns whether I’s investment is successful or not. If E has entered,

the two firms compete in prices according to standard (possibly asymmetric) Bertrand

price competition. Otherwise, I remains a monopolist. The market demand function Q
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is the same as before but is multiplied by β, which if greater than one reflects that the

final period actually represents many periods.

Let pm (c) denote the standard monopoly price which maximizes (p− c)Q (p), which we

assume is uniquely defined for cL ≤ c ≤ cH , and assume pm (cH) > pm (αcL + (1− α) cH) >

pm (cL) > cH for 0 < α < 1. The assumption just states the standard property that price is

strictly increasing in marginal cost, and that I’s innovation is not drastic. The corresponding

one-period monopoly profit is denoted πm (c) = (pm (c)− c)Q (pm (c)). Let ∆πm = πm (cL) −
πm (cH) > 0 be the gain in monopoly profit from successful innovation. Note that if it expects

an investment of k, E’s expected profit is

ΠE = (1− α (k)) (cH − cL)Q (cH)− F

since due to Bertrand competition it only makes a profit if it has a cost advantage. Assume

(cH − cL)Q (cH) > F so that E would want to enter if it knew I’s costs would remain at cH .

This ensures there exists 0 < ke < K such that ΠE (ke) = 0, so that E enters if and only if it

expects k < ke.

To solve for the equilibrium of this game, we consider the reordered game in which I sets

its price p first, before it sets k.

If I expects entry, its expected profit is

Πc
I (p, k) = (p− (α (k) cL + (1− α (k)) cH))Q (p)− C (k) . (10)

Note because of Bertrand competition after entry, I does not obtain any profit after entry.

Differentiating Πc
I with respect to k for a given p implies

dΠc
I

dk
= α′ (k) (cH − cL)Q (p)− C ′ (k) .

We assume there exists a unique p such that

α′ (ke) (cH − cL)Q
(
p
)

= C ′ (ke) .

If I does not expect entry, its expected profit is

Πm
I (p, k) = (p− (α (k) cL + (1− α (k)) cH))Q (p)− C (k) (11)

+β (α (k)πm (cL) + (1− α (k))πm (cH)) .

Comparing (11) with (10), clearly I does better without entry for any given k and p. Differen-

tiating Πm
I with respect to k for a given p implies

dΠm
I

dk
= α′ (k) ((cH − cL)Q (p) + β∆πm)− C ′ (k) .
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We assume there exists a unique p < cH such that

α′ (ke) ((cH − cL)Q (p) + β∆πm) = C ′ (ke) .

This assumption guarantees that for any non-strategic choice of its first-stage price

pm (α (k) cL + (1− α (k)) cH) ,

I will not want to invest enough (regardless of its expectation about E’s entry decision) to make

E want to stay out. This is because pm (α (k) cL + (1− α (k)) cH) > cH > p > p, where the

inequalities follow from our earlier assumptions.

Given our specification, I has a greater incentive to invest in cost-reducing R&D if it expects

to remain a monopolist next period reflecting that it obtains profit in the subsequent period

if there is no entry. We can now specify the equilibria in the subgame for any price p. There

are three regions. In case p ≤ p, then there is a unique equilibrium in which E stays out and

I invests some k ≥ ke. In case p > p, then there is a unique equilibrium in which E enters

and I invests some k < ke. For prices p < p ≤ p, both of these pure strategy equilibria exist.

However, selection of the equilibrium without entry is implied by a forward induction argument.

If it expects entry, I would do best setting its non-strategic price (a price between pm (cL) and

pm (cH)), corresponding to its monopoly price given some k < ke. It could only do better than

this by setting p ≤ p if it expected as a result that E would not enter. Therefore, the fact that

it chooses p ≤ p signals to E that it is coordinating on the equilibrium in which E does not

enter, in which it sets k = ke. If E reasons in this way, E would indeed rather not enter.

Finally, consider I’s first stage choice of price. It does best either setting its non-strategic

price, so there will be entry, or the limit price p, so as to deter entry. It will choose the latter

whenever Πm
I (p, ke) ≥ maxp,k Πc

I (p, k).

The equilibrium with entry deterrence involves I overinvesting in the cost-reducing tech-

nology compared to the passive-beliefs equilibrium in which I’s choice of first-stage price does

not affect E’s expectation about k. This is despite the fact its investment is not observed by

E. This captures the commitment effect discussed in Section 4.1.1 of the main paper. Indeed,

I will invest the same amount as if its investment is fully observable (i.e. ke), although the

set of parameter values for which it wants to deter entry is smaller than when its investment

is observed, due to the lower profitability of having to engage in limit pricing. Moreover, entry

deterrence will involve limit pricing compared to the full information case. Under our assump-

tions, the incumbent sets its price below its initial cost cH , so as to create an incentive for itself

to set a sufficiently high level of k so as to deter entry. This represents signal exaggeration as

explained in Section 4.1.2 of the main paper. Note, in case the technology is not successful,

this implies the incumbent prices below its marginal cost. Depending on parameter values it

could also be that p < cL, so pricing is below cost even when the investment in the technology

is successful. With its entry successfully deterred, I will raise its price above the limit price in
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the final stage (i.e. either to pm (cL) or pm (cH), both of which exceed cH , and so exceed p).

This equilibrium is therefore consistent with predatory pricing.

2.3 Quality choice, burning money and advertising

There is a well-established literature looking at the fundamental problem of how a firm convinces

consumers of its unobserved quality. In contrast to the exogenous quality literature, to the

best of our knowledge, the endogenous quality literature (discussed in the literature review

of the main paper) has not considered firms setting both price and advertising as signals of

their unobserved quality. This may have been due to a lack of a consistent way to handle

consumer beliefs in the face of off-equilibrium prices and advertising levels. Using Reordering

Invariance, handling multi-dimensional signals is straightforward. In order to compare results

with the classical signaling setting as cleanly as possible, we will introduce the simplest possible

framework in which to imbed both settings.

There are four stages. In the exogenous quality version of the model, in stage 1 nature

determines the quality of the firm (a monopolist) according to t ∈ {L,H}, with the probability

that t = H given by 0 < ρ < 1. In the endogenous quality version of the model, in stage

1 the firm (rather than nature) chooses its quality from the same set. The rest of the game

remains the same regardless of how quality is chosen. In stage 2, the firm chooses a price

P ≥ 0 and an advertising expenditure A ∈
[
0, A

]
for some sufficiently large A. In stage 3, a

representative consumer (or a continuum of identical consumers) observes these choices but not

the quality level and decides whether to buy from the firm or not. In stage 4, if the consumer

buys, it observes the firm’s true quality, and decides whether to buy again or not. The firm

and consumer discount payoffs in this last period by δ. Consumers wishing to buy in a period,

buy a single unit, receiving utility vt from the good of type t. The unit cost of production is ct.

Assume (A1) vH > vL > cH > cL, (A2) vH − cH > vL− cL and (A3) δ < (cH − cL) / (vH − cH).

Consider first the game with exogenous quality. Milgrom and Roberts (1986) use standard

refinements of sequential equilibria to focus on the least-cost separating equilibrium outcome,

which is also our focus here. In the resulting refined equilibrium, a high quality firm sets its

price at the monopoly level vH and advertises at the minimum level (denoted A∗) required to

ensure that the low quality firm will not want to mimic it. If the low quality firm chooses

(P,A) = (vH , A
∗) in stage 2, it will make a sale in stage 3 but not a repeat sale since its

price exceeds its true quality vL. Its profit will therefore be vH − cL − A∗. Alternatively, if

the firm prices at vL, consumers will be willing to buy from it in both stages 3 and 4, and

so if it chooses no wasteful advertising, it can obtain a profit of (1 + δ) (vL − cL). Therefore,

to prevent the low quality firm from wanting to mimic it, the high quality firm will choose

A∗ = (vH − cL)− (1 + δ) (vL − cL). (A1)-(A3) imply A∗ > 0, so a high quality firm can indeed

signal it is high quality, but this requires a positive level of dissipative advertising.

Contrast this to a setting where quality is determined endogenously at stage 1. In the

reordered game in which price and advertising are chosen in stage 1 and quality in stage 2,
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consumers will never buy if P > vL since (A3) implies the firm always has an incentive to

choose low quality. That is, if the firm sets P > vL and consumers expect the firm to produce

high quality, the firm obtains (1 + δ) (P − cH)−A if it chooses high quality and P − cL −A if

it chooses low quality. Under (A3), the firm obtains higher profit from producing low quality.

The problem is second period profits are discounted too much. Alternatively, if P ≤ vL, the

firm will sell in both periods regardless of its quality, and so it will again prefer to produce

low quality. The firm therefore maximizes its profit by choosing P = vL in the first stage, with

A = 0. Consumers will purchase from the firm in both stages. This is the unique RI-equilibrium

outcome in the original game. Advertising (or more generally, burning money) is like a sunk

cost in this setting and does not change a firm’s incentives to supply quality. Burning money

does not convince consumers the monopolist is high quality because if it did, the monopolist

could do even better choosing low quality but still advertising by the same amount, thereby

facing lower costs.5

Advertising can play a “signaling” role in the endogenous quality setting once it has a

demand expanding effect. For example, advertising that increases the likelihood a buyer will

consider a repeat purchase (i.e. advertising activates the recollection of past purchase experi-

ences, as in Nelson 1974, p. 734) increases the payoff to choosing high quality since it strengthens

the repeat purchase effect, potentially enabling an equilibrium with high quality to be restored

in the above model. Here we provide a formal model of prices and advertising as signals which

captures Nelson’s particular “story” of advertising.

To do so, we adjust the model above to allow that in stage 4, the consumer only makes the

decision of whether to buy again or not with probability φ (A). This probability is assumed

to be strictly increasing in the firm’s advertising expense, capturing the idea of Nelson that

advertising activates the recollection of a past purchase decision. We modify (A3) so that

δφ (0) < (cH − cL) / (vH − cH), which means that without any advertising, the firm would never

choose high quality. In addition we assume (A4) φ′′ (A) < 0 and (A5) δφ′ (0) (vH − cH) < 1.

(A4)-(A5) ensure that in case the firm’s quality is known to consumers, the firm would not want

to advertise at all, since the marginal benefit of advertising is always less than the constant

marginal cost of advertising. Thus, in this model, advertising only arises when it is needed for

signaling purposes.

Consider the reordered version of this new endogenous quality game. With P > vL, the firm

now obtains (1 + δφ (A)) (P − cH) − A if it chooses high quality and P − cL − A if it chooses

low quality. Define

A∗ (P ) = φ−1

(
cH − cL
δ (P − cH)

)
.

For A ≥ A∗ (P ), (1 + δφ (A)) (P − cH) ≥ P − cL, so the unique equilibrium in the subgame

5Likewise, in a static model in which costs are increasing in quality and no consumers are informed
of quality, a high price will not convince consumers the monopolist is high quality because if it did, the
monopolist could do even better with the same high price but choosing low quality, thereby enjoying
lower costs.
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is that the firm will indeed prefer to choose high quality and consumers will buy from it.

Alternatively, if A < A∗ (P ), the unique equilibrium in the subgame is that consumers will

not buy from the firm and it will obtain no profit. In case, P ≤ vL, then the firm obtains

(1 + δφ (A)) (P − cH)−A if it chooses high quality and (1 + δφ (A)) (P − cL)−A if it chooses

low quality, regardless of the level of advertising. The unique equilibrium in the subgame is

therefore one in which the firm produces low quality and consumers always buy from it.

Turning to the first stage of the reordered game in which the firm selects (P,A), (A4)-(A5)

imply the firm will optimally either choose (P,A) = (vL, 0) and obtain

(1 + δφ (0)) (vL − cL) (12)

or set (P,A) = (vH , A
∗ (vH)) and obtain

(1 + δφ (A∗ (vH))) (vH − cH)−A∗ (vH) (13)

= vH − cL −A∗ (vH) .

Thus, in this setting, advertising will be used to signal high quality, whenever (13) exceeds

(12), with the firm producing the high quality product and charging a price of vH in this

case. Interestingly, the level of advertising is higher when firms face less discipline from repeat

purchases (δ is lower). However, if δ is too low, then the firm will prefer not to advertise at all.

2.4 Corporate finance and costly collateral pledging

We take the benchmark model of adverse selection and signaling from Tirole (2006, p. 253) and

adapt it so the “type” of the borrower is endogenously determined. In the game we consider,

a borrower (entrepreneur) first chooses whether to exert effort or not which costs K. If the

borrower exerts effort, then the borrower can invest I in a project which will have a payoff

of R > 0 with probability 0 < p < 1 and 0 otherwise. If the borrower does not exert effort,

then the same project will have a payoff of R with probability 0 < q < p, and 0 otherwise.

Following its choice of effort, but before observing the outcome of the project, the borrower

proposes a contract which is denoted (Rb, C). The borrower chooses how much it will pay the

lender (investor) in the case of success (denoted Rb) and also how much collateral C ≥ 0 it will

transfer to the lender in case of failure. The lender values this collateral at βC where 0 < β < 1.

The lender observes the contract offer but not the borrower’s effort and must decide whether

to fund the project by investing I. The lender requires the recovery of I in expectation to fund

the investment.

To make the problem interesting we assume K satisfies(
1− q

p

)
(pR− I) < K < pR− I. (14)

The right-hand side inequality ensures that in a full information setting, the borrower’s effort
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and the lender’s investment can deliver a positive surplus. The left-hand side inequality ensures

that if the lender is willing to invest without any collateral based on the expectation that the

borrower will exert effort (so pRb = I), then the borrower will not actually want to exert effort

(since q (R−Rb) > p (R−Rb) − K). We also assume (p− q)R > K, so exerting effort is

efficient. Finally, we assume qR < I, so if the borrower does not exert effort, then the surplus

from the project is negative.

Consider now the reordered game. In this case, the contract is chosen first, and then the

borrower decides on effort and the lender decides whether to accept the contract. If the contract

(Rb, C) satisfies

p (R−Rb)− (1− p)C −K ≥ q (R−Rb)− (1− q)C (15)

pRb + (1− p)βC ≥ I, (16)

then there is a unique equilibrium in the subgame that follows in which the borrower exerts

effort and the lender accepts the contract. For any (Rb, C) not satisfying one or both of these

constraints, one can show using the assumptions above that in the unique equilibrium in the

resulting subgame, the borrower can expect to get at best zero profit (either because the bor-

rower exerts no effort so the surplus from the project is negative, or the lender will reject the

contract even if the lender expects the borrower to exert effort, or both).

The candidate for the best first-stage choice of (Rb, C) is therefore the one maximizing the

payoff to the borrower, π = p (R−Rb) − (1− p)C − K, subject to the constraints (15)-(16).

This implies

C∗ =
pK − (p− q) (pR− I)

((1− β) p+ β) (p− q)
> 0

R−Rb =
β (1− p)K + (pR− I) (p− q)

((1− β) p+ β) (p− q)
> 0,

and the constraints are binding. The resulting borrower’s equilibrium payoff is

π∗ =
(pR− I) (p− q)− (p (1− q)− βq (1− p))K

((1− β) p+ β) (p− q)
,

which is positive given

(pR− I) (p− q)− (p (1− q)− βq (1− p))K > (pR− I −K) (p− q) > 0,

where the last inequality follows from the right-hand side of (14). Note the borrower will put

up positive collateral (i.e. C∗ > 0) and will pay the lender less than the full-information among

(i.e. R∗b <
I
p). These results follow from the left-hand side of (14).

Conceptually, (15) is subtly different from the usual no-mimicking condition when the bor-

rowers’ types are determined by nature. In the exogenous signaling game, the condition was

that the bad borrower did not want to try to mimic by offering the same contract that a
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good borrower would offer. In the separating equilibrium it should be better off offering its

full-information contract and revealing it is bad. In the analysis above, (15) requires that the

borrower should not be better off avoiding effort in the first place but offering the same contract

(assuming the investor still thinks the borrower is “good”) versus choosing effort and so actually

being “good”. Both are no-mimicking like constraints, except the comparison is different. In

the exogenous signaling game the payoff is determined by ensuring that the bad borrower is

revealed as bad; in the endogenous signaling game the payoff is determined by ensuring that

the borrower chooses to be “good”. This means the factors which influence the contract, or the

way they do, can be different.

Turning to comparative statics, we have

dC∗

dp
= −(β + p (1− β))Kq + (1− β) (p− q) ((p− q) I +Kp) + βR (p− q)2

(β + p (1− β))2 (p− q)2 < 0,

and
dC∗

dq
=

pK

((1− β) p+ β) (p− q)2 > 0,

which are the opposite of the result in Tirole (2006) in which the borrower’s type is determined

exogenously. When the prospects improve for being high quality (or deteriorate for being low

quality), less collateral will be posted. This can be explained. As p increases (or q decreases),

then the alternative of not exerting effort becomes less profitable, so the borrower does not need

to distort the contract so much in order that it will want to carry out effort. Clearly, the results

also imply, the more costly is effort (K increases), the more collateral will be posted, which is

consistent with a more severe moral hazard problem resulting in more collateral being posted.

3 Appendix to Section 5

This section provides the technical materials, the reordering algorithm and the guide to reorder-

ing which were referred to in Section 5 of the main paper.

3.1 Preliminaries

This section provides some of the notation and concepts needed for subsequent sections. We use

the definition of extensive-form games presented by Hart (1992), originally due to Kuhn (1953).

An extensive-form game G is a tuple (N, (X,�), P, ρ, (Ii)i∈N , (ui)i∈N ), where N = {1, 2, . . . , n}
is a set of players; (X,�) is a rooted tree (also called the game tree), where X is a finite set

of nodes and � is the partial order on X, called precedence relation; Z ⊂ X is the set of

terminal nodes; P is a player partition, which partitions the set of non-terminal nodes (each

of the non-terminal nodes is also called a “move”) X \ Z into n + 1 cells, P 0, P 1, · · · , Pn; ρ

specifies probability distributions over states at each of nature’s moves (each element of P 0);

Ii is an information partition, which partitions P i into information sets for each player i; and
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ui : Z → R is the payoff function for each player i.

For any player i ∈ N , all nodes in an information set Iij (where j is the index of a particular

information set for player i) have the same number of outgoing branches, and every path in the

tree from the root to a terminal node can cross each Iij at most once. Each of these branches

at each of the information sets is called an action, and the set of actions available at each

information set Iij is called an action set, and denoted by A(Iij). We assume the action sets are

finite, requiring that they contain at least two actions and that no action is redundant.6

Let x be a typical element in the set of nodes X. When x1 � x2, we say that x1 weakly

precedes x2 or equivalently x2 weakly succeeds x1 (x1 is a weak predecessor of x2 and x2 is a

weak successor of x1). When x1 � x2 and x1 6= x2, we write x1 ≺ x2 and say that x1 precedes

x2 or equivalently x2 succeeds x1 (x1 is a predecessor of x2 and x2 is a successor of x1). We

say that x2 is a direct successor of x1 (and x1 is a direct predecessor of x2) if x1 ≺ x2 and

x1 ≺ x3 � x2 implies x3 = x2, and write x2 ∈ s(x1) and x1 = p(x2). We also say that an

information set Ij precedes another information set Ik or equivalently Ik succeeds Ij if for each

node x2 ∈ Ik there exists a node x1 ∈ Ij such that x1 ≺ x2. We refer to a player’s information

sets which do not have any preceding information sets among the player’s information sets as

the player’s first information sets.

A (behavior) strategy πi for a player i ∈ N is a function that associates each of the player’s

information sets with a probability distribution on the player’s action set, that is πi(I
i
j) ∈

∆A(Iij), where ∆A(Iij) is the space of probability distributions on the action set A(Iij). We call

πi(I
i
j) player i’s local strategy at Iij . A strategy profile π is a list (πi)

n
i=1. We call the probability

distribution on the terminal nodes that is induced by a strategy profile the outcome of the game

associated with the strategy profile. We also denote the set of all strategies for player i by Πi

and the set of all strategy profiles by Π. We also say that player i’s strategy πi ∈ Πi is a pure

strategy if probability distributions at all of its information sets are degenerate, and denote the

set of all pure strategies for player i by Si and the set of all pure-strategy profiles by S.

We denote the above class of extensive-form games with perfect recall by Γ. Each extensive-

form game in Γ induces its own normal-form game (N, (Si)i∈N , (ũi)i∈N ), where N is the set of

players, Si is the set of pure strategies for each player i, and ũi is a payoff function for each

player i, induced by ui. The induced payoff function ũi (in the normal-form game) associates

each pure-strategy profile s ∈ S with payoffs while the payoff function ui (in the extensive-form

game) associates each terminal history with payoffs. We say that two pure strategies for a

player are equivalent if they yield the same payoffs to all players for any combination of the

other players’ pure strategies. By taking only one representative pure strategy from each set

of equivalent pure strategies, we obtain the reduced normal-form game. For example, in the

normal-form game of the extensive-form game in panel (a) of Figure 1 of the main paper, the

sender has eight pure strategies, whereas in the reduced normal-form game, the sender has only

four pure strategies.

6We say that an action at an information set is redundant if there is another action in the action set
which leads to the same payoffs to all players for any combination of subsequent actions.
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3.2 Class of endogenous signaling games

In this section, we explain further what we mean by a sender’s actions or combinations of

actions being partially observed by a receiver and provide a formal definition of the property

in item 4 in the definition of the class of endogenous signaling games ΓS (in Section 5.1 of the

main paper).

Suppose a sender has more than one information set in the signaling stage. Then “partial

observability” means that among the combinations of actions taken at the sender’s information

sets, more than one combination of actions, but not all combinations of actions are taken in the

paths through the receiver’s particular information set. Consider the endogenous signaling game

illustrated in panel (a) of Figure 1 of the main paper, in which the sender’s four combinations of

actions (I, L), (I,H), (N,L), and (N,H) are partially observed by the receiver in the reaction

stage (i.e. the combination of actions (I, L) and (N,L) are partially observed by the receiver

at one of its information sets, and the combination of actions (I,H) and (N,H) are partially

observed by the receiver at its other information set).

Suppose a sender has only one information set in the signaling stage. Then partial observ-

ability means that among the actions taken at the sender’s information set, more than one

action, but not all actions are taken in the paths through the receiver’s particular information

set. Suppose we modify the above game such that the sender makes the two choices jointly at

one move, i.e. choosing among IL, IH, NL, and NH. Then the sender’s four actions IL, IH,

NL, and NH are partially observed by the receiver in the reaction stage (i.e. the actions IL

and NL are partially observed by the receiver at one of its information sets, and the actions

IH and NH are partially observed by the receiver at its other information set).

We require that each player’s information on another player’s previous actions should be

independent of its information on a third player’s previous actions in item 4 of the definition of

the class of games ΓS . Requiring this property is equivalent to requiring the observable-deviators

property, which is due to Battigalli (1996, 1997).

Definition (Observable Deviators) For any information set Iij of player i’s, let S(Iij) de-

note the set of strategy profiles inducing a play that reaches a node in Iij . Let S1(Iij), S2(Iij), . . . ,

Sn(Iij) be its projections on each player’s strategy sets S1, S2, . . . , Sn. Then a game in Γ has

observable deviators if for all i ∈ N and for all Iij ∈ Ii, S(Iij) = S1(Iij)×S2(Iij)× . . .×Sn(Iij).

3.3 Reordering algorithm

In this section we show the algorithm of reordering the original game, which makes the relevant

non-singleton information sets definite. The reordering involves a combination of the coalescing

of moves and the interchange of moves (see Thompson (1952) for the definition of these two

transformations), and is based on the receivers’ information on the senders’ actions.

The algorithm requires some additional definitions. For any game in ΓS , we refer to each

sender’s action (in case it has only one information set in the signaling stage) or combination of
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actions (in case it has more than one information set in the signaling stage) taken in the signaling

stage as its composite action. In the illustrative example in Section 3 of the main paper, the

sender has four composite actions IL, IH, NL, and NH, and in the game in panel (a) of

Figure 1, each sender has four composite actions airi, aini, a
′
iri, and a′ini.
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Figure 1: Endogenized observability

Consider the collection of a receiver’s first information sets in the reaction stage in a game

in ΓS . Since games in ΓS have the observable-deviators property, each of the receiver’s first

information sets can be expressed as a Cartesian product of sets where each component shows

the set of possible composite actions taken by each sender (or the set of possible actions taken by

each player who is not a sender) to reach the information set. We collect from the receiver’s first

information sets, the component (of the Cartesian product) showing the set of possible composite

actions taken by a particular sender7, and call the collection the receiver’s information partition

with respect to the sender and each element of the partition an information set with respect to

the sender.8 As an example, consider the game in panel (a) of Figure 1, which is a game in

ΓS . In the game, all nine of the receiver’s (R’s) information sets are its first information sets.

Four of them are singleton, and the other five are non-singleton information sets. Each of the

information sets can be expressed as a Cartesian product, as shown in Table 2. Collecting the

components for each sender (S1 and S2), we obtain the receiver’s information partition with

respect to each sender {{airi}, {a′iri}, {aini, a′ini}}.
7We ignore the receiver’s information partition with respect to players other than senders because

they are either a singleton partition (in case all the player’s actions taken in the signaling stage are
observed by the receiver) or a trivial partition (in case all the player’s actions taken in the signaling
stage are unobserved by the receiver), and so the reordering of the information sets belonging to these
players is not necessary.

8For the sake of expositional simplicity, we proceed assuming every terminal history of the game
includes at least one action by each receiver. Otherwise, the affected receiver’s information partition
with respect to a sender may not cover all of the sender’s composite actions. In this case, we just
need to complete the partition simply by adding a dummy information set containing all of the sender’s
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Receiver’s first information sets expressed as Cartesian products

{(a1r1, a2r2)} {a1r1} × {a2r2}
{(a1r1, a′2r2)} {a1r1} × {a′2r2}
{(a′1r1, a2r2)} {a′1r1} × {a2r2}
{(a′1r1, a′2r2)} {a′1r1} × {a′2r2}

{(a1r1, a2n2), (a1r1, a′2n2)} {a1r1} × {a2n2, a′2n2}
{(a′1r1, a2n2), (a′1r1, a

′
2n2)} {a′1r1} × {a2n2, a′2n2}

{(a1n1, a2r2), (a′1n1, a2r2)} {a1n1, a′1n1} × {a2r2}
{(a1n1, a′2r2), (a′1n1, a′2r2)} {a1n1, a′1n1} × {a′2r2}

{(a1n1, a2n2), (a1n1, a′2n2), (a′1n1, a2n2), (a′1n1, a′2n2)} {a1n1, a′1n1} × {a2n2, a′2n2}

Information partition with respect to
sender 1 {{a1r1}, {a′1r1}, {a1n1, a′1n1}}
sender 2 {{a2r2}, {a′2r2}, {a2n2, a′2n2}}

Table 2: Receiver’s first information sets

These two concepts are similar to a player’s “information partition” and “information sets”

in their standard usage, except that they are projections of their standard counterparts to the

space of a particular sender’s composite actions. As usual, a singleton information set implies

that the receiver knows perfectly which composite action the sender has taken whereas a non-

singleton information set implies that it is confused about which composite action the sender has

taken. We call the Cartesian product of the receiver’s information partitions, each of which is

with respect to each sender, the receiver’s information partition with respect to all senders. This

partition summarizes the receiver’s information on all the senders’ actions and has an important

role in the reordering algorithm. In the above example, the receiver’s information partition with

respect to all senders is {{a1r1}, {a′1r1}, {a1n1, a
′
1n1}} × {{a2r2}, {a′2r2}, {a2n2, a

′
2n2}}.

Suppose there are m senders. We fix an order of the m senders so that the senders are

labeled 1, 2, . . . ,m. We categorize receivers based on their information partitions with respect

to all senders (hereafter we simply write “ information partition” omitting “with respect to

all senders”). For each of the different information partitions, we construct an extensive-form

game, where the information sets in the signaling stage are rearranged according to the following

algorithm and the payoff functions are inherited from the original game up to the relabeling of

actions. We call the extensive-form game constructed this way the reordered game with respect

to the associated information partition, and each of the receivers whose information partition

is used to construct the reordered game an associated receiver.

1. Sort information sets in the signaling stage as follows: information sets of the players all

of whose actions are observed by the associated receivers (if any), sender 1’s information

sets, sender 2’s information sets, . . ., sender m’s information sets, information sets of the

players all of whose actions are unobserved by the associated receivers (if any).

2. For each sender who has more than one information set, coalesce them into one informa-

uncovered composite actions.
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tion set, which we call its composite information set, such that the actions taken there

are its composite actions. For each sender having only one information set, consider the

information set as its composite information set and each of its actions as a composite

action for the next step.

3. For each sender, decompose the composite information set from step 2 into a first infor-

mation set and succeeding information set(s) such that (i) each available action at the

sender’s first information set leads to each distinct cell (i.e. information set) of the asso-

ciated receivers’ information partition with respect to the sender, and (ii) each available

action at the sender’s succeeding information sets9 leads to each distinct element of the

cell.10

4. Reorder the senders’ first and succeeding information sets according to the order of senders

as follows: sender 1’s first information set, sender 2’s first information set, . . ., sender m’s

first information set, sender 1’s succeeding information sets (if any), sender 2’s succeeding

information sets (if any), . . . , sender m’s succeeding information sets (if any).

We use the “interchange of moves” iteratively in steps 1 and 4 and the “coalescing of moves”

for each sender in each of steps 2 and 3. As a result, each of the reordered games shares the

same reduced normal form as the original game. Note that for endogenous signaling games

with only one sender, steps 1 and 4 are not necessary. Even with multiple senders, step 4 is not

essential, but it ensures the reordered game is played in a natural way such that senders choose

their observed actions first simultaneously and then their unobserved actions simultaneously.

Step 3 makes sure that all actions available at each sender’s first information set are observed

and all actions available at each sender’s succeeding information sets are unobserved by the

associated receivers. For this reason, all associated receivers’ non-singleton information sets

become definite in the reordered game, which is at the heart of the proof of Proposition 4.

Suppose in the illustrative example in Section 3 of the main paper the sender makes the

two choices jointly, i.e. chooses among IL, IH, NL, and NH at one move. Then each of the

four actions are partially observed by the receiver. The receiver’s information partition (with

respect to the sender) is {{IL,NL}, {IH,NH}}. Since there is only one sender, steps 1 and

4 are not necessary. We consider the sender’s information set as its composite information set

(step 2). Step 3 means that we decompose the sender’s composite information set to its first

information set where it chooses between {IL,NL} and {IH,NH} (i.e. between L and H),

which are observed by the receiver, and its succeeding information sets where it chooses between

I and N , which are unobserved by the receiver. Applying the algorithm, we obtain the same

reordered game as in panel (b) of Figure 1 of the main paper.

9Note that among the same sender’s succeeding information sets obtained in step 3, no information
set precedes another information set.

10In case an action available at the sender’s first information set leads to the associated receivers’
singleton information set in their information partition with respect to the sender, there is no succeeding
information set following the action.
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Consider the game in panel (a) of Figure 1. Recall that the receiver’s information parti-

tion with respect to each sender is {{airi}, {a′iri}, {aini, a′ini}}. Step 1 of the algorithm means

that we interchange sender 2’s first information set and sender 1’s succeeding information sets.

Step 2 means that we construct the composite information set for each sender, where it has

four composite actions available: airi, a
′
iri, aini, and a′ini. Step 3 means that we decompose

each sender’s composite information set to its first information set and its succeeding informa-

tion set. At the first information set, it chooses an action leading to one of the three cells of

{{airi}, {a′iri}, {aini, a′ini}}. In case it has chosen {aini, a′ini} (“not reveal”) at the first infor-

mation set, the succeeding information set follows, where it chooses an action leading to one of

the elements of {aini, a′ini}, i.e. between the unrevealed actions ai and a′i. Note that the actions

at the senders’ first information sets are observed and the actions at their succeeding informa-

tion sets are unobserved by the receiver in the reordered game. Step 4 means that we reorder

the senders’ information sets such that senders choose their observed actions simultaneously,

then unobserved actions simultaneously.

In case the receivers have different information regarding the sender’s actions, in general we

need to construct a reordered game for each receiver, following the reordering above. This case

is illustrated with the example of private contracting in Section 5.4 in the main paper. However,

one reordered game may be sufficient if the different information partitions can be combined to

form a linearly-ordered set under the usual partial order. For example, consider a game with

one sender and three receivers. The sender chooses one out of eight actions a, b, . . . , h at its

single move. Then three receivers move simultaneously, having observed the sender’s action

partially, according to the following information partitions:

Receiver 1: I1 = {{a, b, c, d}, {e, f}, {g, h}},
Receiver 2: I2 = {{a, b}, {c, d}, {e, f, g, h}},
Receiver 3: I3 = {{a}, {b}, {c, d}, {e, f}, {g, h}}.

The three information partitions can be combined to form a linearly-ordered set

{{{a, b, c, d}, {e, f, g, h}}, {{a, b}, {c, d}, {e, f}, {g, h}}, {{a}, {b}, {c, d}, {e, f}, {g, h}}}.

Then it is sufficient to construct just one reordered game such that the sender chooses between

{a, b, c, d} and {e, f, g, h}, followed by another choice between {a, b} and {c, d} (if the previous

choice was {a, b, c, d}) or between {e, f} and {g, h} (if the previous choice was {e, f, g, h}),
followed by the last choice between the two elements in each of the two-element sets.

In the described algorithm above, we implicitly assumed that the associated receivers’ in-

formation on the senders’ actions does not change (i.e. the information partition does not get

refined in the reaction stage) for the simplicity of the exposition. If the associated receivers’

information changes, but independently of their choices, constructing a single reordered game

would be sufficient. In this case, steps 1 and 2 above still apply, but step 3 should be more

involved such that the reordering may reflect the sequence of information refinement. For

19



example, suppose the original game is such that there is a single sender with five available

actions at its single move, {a, b, c, d, e}, and the associated receivers’ information partition on

the sender’s actions gets refined as it moves sequentially in the reaction stage, {{a, b, c}, {d, e}}
→ {{a, b}, {c}, {d, e}} → {{a}, {b}, {c}, {d, e}}. Then the reordered game should be such that

the sender chooses between {a, b, c} and {d, e}, followed by another choice between {a, b} and

c (if the previous choice was {a, b, c}) or between d and e (if the previous choice was {d, e}),
followed by the last choice between a and b (if the previous choice was {a, b}). Suppose the

change in the associated receivers’ information depends on their choices. In case the different

sequences of information refinement are compatible, one reordered game can still cover them

all. In case the different sequences of information refinement are not compatible, we need

to construct more than one reordered game, one for each incompatible sequence of information

refinement. The different sequences of information refinement are (in)compatible if the informa-

tion partitions in different sequences can(not) be combined to form a linearly-ordered set under

the usual partial order. For example, the different sequences of information refinement are com-

patible if the receivers can discover different senders’ unobserved actions by choosing different

respective actions; and the different sequences of information refinement are incompatible if one

sequence is {{a, b, c}, {d, e}} → {{a, b}, {c}, {d, e}} while another sequence is {{a, b, c}, {d, e}}
→ {{a}, {b, c}, {d, e}}.

3.4 A guide to reordering

The previous algorithm explains how to reorder endogenous signaling games in general. We

have explained how to reorder some specific endogenous signaling games at various points in the

main paper and in this online appendix. In this section we summarize these specific examples,

provide some additional guidance on reordering a game with competing firms, and explain how

to reorder games in which receivers move in the signaling stage (which are outside the class of

endogenous signaling games defined in Section 5.1 of the main paper).

Summary of existing cases: For games in which a single sender moves in stage 1, and a

single receiver (or multiple receivers who all share the same information regarding the sender’s

actions) move(s) in stage 2, we described the appropriate reordering at the start of Section 4

in the main paper. Figure 1 in the main paper illustrates with a particular example. We

also discussed a number of applications of such games in Section 4.2 and provided the analysis

for these applications in Section 2 of this appendix. The limit-pricing application illustrates

the point that we can trivially allow for random choices by nature provided they do not arise

between the sender’s moves that need to be reordered.

This same reordering applies if some players observe all of the sender’s actions or never

observe the sender’s actions, or if there are some other players (they could be competing with

the single sender) whose actions are fully observed or never observed. We can also add extra

stages after the reaction stage where all the previous moves become common knowledge. In this
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case, a practical approach is to identify the equilibrium of the continuation games and embed

the equilibrium payoffs in the original payoff functions.

This same reordering also works if in the original game the sender chooses multiple actions

at one move, as was explained in Section 5.2.2 of the main paper.

So far, in this section, we have assumed that if there are multiple receivers, the receivers

all share the same information regarding the sender’s actions. The case where receivers have

different information regarding the sender’s actions and yet the reordering only requires a single

reordered game is discussed in the second-to-last paragraph of the previous section, where we

explain how to do the reordering for one such game. An example of how to do the reordering

in case multiple reordered games are required is given in Section 5.4 in the main paper.

For games in which the observability of a sender’s or senders’ first action depends on its

choice of the subsequent actions, we explained how to do the reordering in Section 5.2.2 of the

main paper, with the reordering illustrated in Figure 1 in this appendix.

For games in which there are multiple senders each of whom just chooses some unobserved

and some observed actions in the signaling stage but there is a single receiver (or multiple

receivers who all share the same information regarding the senders’ actions) that move(s) in the

reaction stage, we explained how to do the reordering in Section 5.2.1 of the main paper, and

illustrated this in Figure 2 in the main paper. Next, we provide a further example of multiple

senders that covers the case each sender chooses its unobserved and observed actions at a single

move, and not all players have the same information on the senders’ actions.

Further example of multiple senders: Consider the case of multiple firms that compete

in price and quality. Suppose each firm chooses its price and quality at the same time. Suppose

all consumers observe prices but only a fraction λi of consumers observe quality from firm

i, where 0 < λi < 1. Alternatively, each consumer may observe the quality of firm i with

probability λi.

Suppose firm i’s profit can be represented as

πi (pi, p−i; qi, q−i;Di) ,

where pi, qi, and Di represent firm i’s price, quality and demand by consumers, and p−i and q−i

represent vectors of prices and qualities for all other firms. Let p = (pi, p−i) and q = (qi, q−i)

be the vectors of all prices and quantities, respectively. From firm i’s perspective, consumer

demand for its product is determined by a consumer optimization problem, which depends on,

in general, firm i’s price and quality (either actual or expected quality, depending on whether

consumers observe the firm’s quality or not) and equilibrium prices and qualities of all other

firms. As a result, the pure-strategy RI-equilibrium is defined by finding the equilibrium of the
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reordered game, which requires for all i

p̃i ∈ arg max
pi

 λiπi

(
pi, p̃−i; q̃i(pi), q̃−i; D̃i (pi, p̃−i, q̃i(pi), q̃−i)

)
+ (1− λi)πi

(
pi, p̃−i; q̃i (pi) , q̃−i; D̃i (pi, p̃−i, q

e
i (pi) , q̃−i)

)  ,

q̃i(pi) ∈ arg max
qi

 λiπi(pi, p̃−i; qi, q̃−i; D̃i (pi, p̃−i, qi, q̃−i))

+ (1− λi)πi
(
pi, p̃−i; qi, q̃−i; D̃i (pi, p̃−i, q

e
i (pi) , q̃−i)

)  ∀pi,

qei (pi) = q̃i(pi) ∀pi.

q̃i = q̃i(p̃i),

where qei (pi) denotes consumers’ belief about firm i’s quality qi. It is useful to note that the

Envelope theorem can be used to simplify the first-order conditions for this reordered game since

when differentiating profit with respect to price, we can set the impact through q̃i(pi) to zero.

However, there remains the direct effect of changing price, and the signaling-commitment effect

through qei (pi). Having found the equilibrium of the reordered game based on the conditions

above, we can take this equilibrium outcome as the equilibrium outcome of the original game.

This is the RI-equilibrium outcome that is defined in Section 5.2.3 of the main paper.

Receivers move in the signaling stage: In the class of games defined in Section 5.1

of the main paper, we assumed receivers move only in the reaction stage. This made it easier

to express some of our definitions and formal results. In practice, we can still make use of

Reordering Invariance for these games. In the remainder of this section, we show how to

reorder two particular examples of interest.

Suppose the sender and receiver move simultaneously in the signaling stage and/or the

reaction stage. An example would be a predator’s choice of price to signal its choice of cost-

reducing investment in a predation game, where the rival also sets its price at the same time as

the predator prior to deciding whether to exit or not. Specifically, consider the following timing

of moves in the original game.

1. In stage 1a, the sender chooses t.

2. In stage 1b, the sender and the receiver choose aS and aR respectively and simultaneously.

3. In stage 2, the sender (having observed the receiver’s choice of aR) and the receiver

(having observed the sender’s choice of aS , but not t) choose bS and bR respectively and

simultaneously.

In stage 1b, only the sender knows its own choice of t. Then the reordered game has the

following timing of moves:

1. In stage 1a, the receiver and the sender choose aR and aS respectively and simultaneously.

2. In stage 1b, the sender choose t.
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3. In stage 1c, the sender (having observed the receiver’s choice of aR) and the receiver

(having observed the sender’s choice of aS , but not t) choose bS and bR respectively and

simultaneously.

Another case of possible interest is when there are multiple senders who are also receivers.

An example would be competitors’ choices of price or quantity to signal their choice of cost-

reducing investment (unobservable by the rivals) in a competition game with two rounds of

competition. This parallels the game analyzed by Mailath (1989) in which nature determined

each competitor’s cost, as noted in Table 1. Specifically, suppose there are two senders who are

also receivers (we will call them players). Consider the following timing of moves in the original

game.

1. In stage 1a, the two players choose t1 and t2 respectively and simultaneously.

2. In stage 1b, the two players choose a1 and a2 respectively and simultaneously.

3. In stage 2, having observed the other player’s choice of aj but not tj , the two players

choose bi (i, j ∈ {1, 2}, i 6= j) simultaneously.

In stage 1b, each player i knows its own choice of ti, but not tj , j 6= i. Then the reordered game

has the following timing of moves:

1. In stage 1a, the two players choose a1 and a2 respectively and simultaneously.

2. In stage 1b, the two players choose t1 and t2 respectively and simultaneously.

3. In stage 2, having observed the other player’s choice of aj but not tj , the two players

choose bi (i, j ∈ {1, 2}, i 6= j) simultaneously.

In stage 1b, each sender i knows its own choice of ai, but not aj , j 6= i.

3.5 Definiteness

In this section, we provide a formal definition of definiteness (introduced in Section 5.2.3 of the

main paper) using the notation in Section 3.1.

We use Kreps and Wilson’s (1982) sequential equilibrium as our basic equilibrium concept

for the broader class of endogenous signaling games ΓS . A system of beliefs is a function

µ : X → [0, 1] such that
∑

x∈Iij
µ(x) = 1 for each Iij ∈ Ii for all i ∈ N . An assessment is a pair

(µ, π) consisting of a system of beliefs µ and a strategy profile π.

Definition (Sequential Equilibrium) A sequential equilibrium is an assessment (µ, π)

that is both sequentially rational and consistent.

Following convention, we often refer to only the strategy profile, omitting the system of beliefs, as

a sequential equilibrium. When there is no risk of confusion, we also use the term “equilibrium”

to mean “sequential equilibrium”.
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Games of imperfect information in Γ contain at least one non-singleton information set. An

equilibrium requires players’ beliefs to be specified at every such information set. As was noted

for the illustrative example in Section 3 of the main paper, typically there are a multitude of

equilibria in games in Γ if players’ beliefs are not pinned down at such information sets.

Definition (Definiteness) We call an extensive-form game without particular payoff func-

tions a “game structure”. Consider an extensive-form game in Γ and its game structure

(N, (X,�), P, ρ, (Ii)i∈N ). We say that a non-singleton information set Iij is definite11 in the

game structure if for any π ∈ Π, there is a unique µ(x) for all x ∈ Iij such that the assessment

(µ, π) is consistent in any game with the game structure, and indefinite otherwise.

If a non-singleton information set is definite, the consistency requirement of sequential equi-

librium pins down the belief at the information set, given any strategy profile. In Lemma 2

below, we provide a necessary and sufficient condition on the game structure for a non-singleton

information set to be definite.12

3.6 Proof of Proposition 4

Consider games in Γ where there is no nature’s move. For any non-singleton information set

Ij , let
∧rp p p(Ij) denote the node x ∈ X such that [xk ≺ xj , ∀xj ∈ Ij ] implies xk � x. We call

it Ij ’s nearest common predecessor. Note that the history of the game up to
∧rp p p(Ij) is perfectly

known by the player at Ij . If the player is confused about the history of the game at Ij , the

confusion is only with respect to actions taken at the information sets containing
∧rp p p(Ij) and

succeeding nodes. We say that Ij is complete in the game structure (see panel (a) of Figure 2)

if every terminal history of the game passing through
∧rp p p(Ij) also passes through a node in Ij

(i.e.
∧rp p p(Ij) ≺ x implies ∃xj ∈ Ij s.t. x � xj or xj ≺ x).

We prove in Lemma 2 that if a non-singleton information set (say, Ij) is complete it must

be definite. If Ij is not complete, we say that there is leakage with respect to Ij . In general,

such leakage can make Ij indefinite because the strategies may assign (locally) all probability

mass to actions not leading to any node in Ij , but there are cases in which such leakage does

not lead to indefiniteness.

Suppose there is leakage with respect to Ij . Then there exist nodes which are successors of∧rp p p(Ij) but neither weak predecessors nor successors of any node in Ij . We choose the smallest

(with respect to the precedence relation �) among them and call each of them a leaked node.

We denote the set of leaked nodes with respect to Ij by l(Ij). We say that leakage happens at

the direct predecessors of the leaked nodes.

Let Il be an information set to which the direct predecessor of a leaked node xl ∈ l(Ij)

belongs (p(xl) ∈ Il). We say that a leaked node xl is an allowed leaked node if the following two

11What is definite is not the information set itself but rather the beliefs conditional on the information
set for any given behavior strategy profile (provided the consistency requirement is satisfied), but we use
this terminology for the sake of brevity.

12A singleton information set is trivially definite.
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(a) Ij is complete.
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(b) Ij is quasi-complete.
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(c) Ij is not quasi-complete (violates 1).
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(d) Ij is not quasi-complete (violates 2).
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Figure 2: Completeness and quasi-completeness

conditions are satisfied for the information set Il, and a non-allowed leaked node otherwise.13

1. Every path from Ij ’s nearest common predecessor
∧rp p p(Ij) to a node in the information set

Ij passes through the information set Il.

2. Every path from Ij ’s nearest common predecessor
∧rp p p(Ij) to a node in the information set

Ij contains the same one action among the actions in A(Il).

We say that Ij is quasi-complete in the game structure if it is not complete but all leaked

nodes xl ∈ l(Ij) are allowed leaked nodes. In Figure 2, where x0 ≡
∧rp p p(Ij), the information set Ij

is not quasi-complete in panel (c) because not every such path passes through the information

set Il and in panel (d) because there are some such paths containing a different action in A(Il).

The information set Ij is quasi-complete and the node xl is an allowed leaked node in panel (b).

Note that in general there can be more than one information set to which allowed leaked nodes

belong although in the example illustrated in panel (b) there is only one.

Now we are ready to state our lemma.

13In games in Γ where there is nature’s move, if the direct predecessor of a leaked node is nature’s
move, then the leaked node can be considered as an allowed leaked node.

25



Lemma 2 (Definiteness) For the game structure of any game G ∈ Γ where there is no

nature’s move, a non-singleton information set is definite if and only if it is either complete or

quasi-complete.

Proof of Lemma 2. (1) The proof of sufficiency is almost immediate. Suppose a non-

singleton information set Ij is complete or quasi-complete. Let x0 be
∧rp p p(Ij). Then applying the

local strategies at the information sets containing x0 and the succeeding nodes until we reach Ij

(skipping the information sets that the direct predecessors of the allowed leaked nodes belong

to in the quasi-complete case), we can pin down the belief at Ij by the consistency requirement

of sequential equilibrium.

(2) Now we prove the necessity of the condition. Suppose a non-singleton information set

Ij is neither complete nor quasi-complete. Then there is leakage with respect to Ij , and at least

one leaked node is a non-allowed leaked node. Choose xl ∈ l(Ij) among the non-allowed leaked

nodes (see Figure 3). Let xk = p(xl). Let x2 be such that x2 ∈ s(xk) and x2 6∈ l(Ij). Such
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Figure 3: Reference for the proof of Lemma 2

x2 exists because there are at least two nodes in s(xk) and s(xk) 6⊆ l(Ij) by the definition of a

leaked node. Let x1 be such that x1 6� x2, x1 ∈ s(x0), and x1 6∈ l(Ij). Such x1 exists for the

following reason: There are at least two nodes in s(x0); Among the nodes in s(x0), exactly one

node weakly precedes x2; If all other nodes in s(x0) belong to l(Ij) then x0 cannot be
∧rp p p(Ij).

Consider a strategy profile that assigns probability 1 to all actions chosen in the paths from x0

to xl, from x1 to a node in Ij (denoted by x11), and from x2 to a node in Ij (denoted by x22).
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In this case, any belief that assigns probability p to the node x11 and (1 − p) to the node x22

where p ∈ [0, 1], is compatible with the consistency requirement of sequential equilibrium.

Given Lemma 2 we only need to prove the non-singleton information sets of the associated

receivers are either complete or quasi-complete in any reordered game. Consider any non-

singleton information set (say, I) of any associated receiver in a reordered game. Note that all

actions available at the information sets containing
∧rp p p(I) and its successors preceding a node in

I are either observed or unobserved at the non-singleton information set; that is, no action is

partially observed. Given the observable-deviators property, this implies that the non-singleton

information set is either complete (if all such actions are unobserved) or quasi-complete (if some

such actions are observed).

3.7 Relationship with proper equilibrium

We stated in Section 5.2.4 of the main paper that for any game in ΓS , the set of proper

equilibrium outcomes is a subset of the set of RI-equilibrium outcomes. We show by an example

that the inclusion is strict for some games in ΓS . Consider the following canonical endogenous

signaling game, which is also in the broader class ΓS .

(a) original game
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(b) reordered game
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Figure 4: Original and reordered games

The reduced-normal-form game is as follows:

The following are RI-equilibria:

(ph+ (1− p)m, a, a, a′; b, c)p∈[ 2
7
,1] with beliefs µ(h|a) = p, µ(m|a) = 1− p, µ(l|a′) = 1,

and payoffs (10, 10p),

(l, a, a, a′; 1
11b+ 10

11b
′′, c) with beliefs µ(h|a) = 1

11 , µ(l|a) = 10
11 , µ(l|a′) = 1,

and payoffs (7, 7),

(l, a, pa+ (1− p)a′, a′; b′′, c)p∈[0,1] with beliefs µ(l|a) = 1, µ(l|a′) = 1,

and payoffs (7, 7).

They correspond to the following strategy profiles in the reduced-normal-form game:
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R
bc bc′ b′c b′c′ b′′c b′′c′

ha 10, 10 10, 10 0, 1 0, 1 4, 0 4, 0
ha′ 0, 1 0, 0 0, 1 0, 0 0, 1 0, 0

S ma 10, 0 10, 0 1, 0 1, 0 0, 4 0, 4
ma′ 0, 1 0, 0 0, 1 0, 0 0, 1 0, 0
la 0, 0 0, 0 0, 0 0, 0 5, 1 5, 1
la′ 7, 7 1, 0 7, 7 1, 0 7, 7 1, 0

Figure 5: Reduced-normal-form game

(pha+ (1− p)ma; bc)p∈[ 2
7
,1] with payoffs (10, 10p),

(la′; 1
11bc+ 10

11b
′′c) with payoffs (7, 7),

(la′; b′′c) with payoffs (7, 7).

Among these, only (4
5ha + 1

5ma; bc), (la′; 1
11bc + 10

11b
′′c), and (la′; b′′c) are proper. The set of

proper equilibrium outcomes {4
5(h, a, b) + 1

5(m, a, b), (l, a′, c)} is a proper subset of the set of

RI-equilibrium outcomes {p(h, a, b) + (1− p)(m, a, b), (l, a′, c)}p∈[ 2
7
,1].

The RI-equilibrium (h, a, a, a′; b, c) with payoffs (10, 10), which is not proper in the reduced-

normal-form game, is arguably the most natural one to select in the game. This equilibrium

can be justified based on a forward-induction argument as follows. When the receiver observes

a, she knows there are many equilibria that this can correspond to: some equilibria yield a

payoff of 10 to the sender while the other equilibria yield a payoff less than 7 to the sender. The

receiver also knows the sender could have chosen a′ and obtained a payoff of 7 (note that (l, c) is

the strictly-dominant-strategy equilibrium in the subgame following a′ in the reordered game).

Thus, once the receiver observes that the sender has chosen a, she can reason that the sender

must believe that they are playing one of the equilibria which yield payoff 10 to the sender

since otherwise he would not have chosen a. In short, choosing a signals to the receiver that

the sender has chosen h or randomized between h and m expecting the better payoff 10. Also

note that the RI-equilibrium strategy profile (ha; bc), which is not proper, survives the iterative

elimination of weakly-dominated strategies (IEWDS) for any order of elimination, whereas all

the proper equilibria do not in the reduced-normal-form game. This shows that sometimes,

considering only RI-equilibria that are proper may be too restrictive.
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